www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - diverse Aufgaben
diverse Aufgaben < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diverse Aufgaben: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 19:57 Di 19.02.2008
Autor: diecky

Aufgabe
Berechnen Sie die folgenden Integrale
(i) [mm] \integral_{2}^{3}{\bruch{dx}{x²-2x+2}} [/mm]
(ii) [mm] \integral_{0}^{2}{\bruch{x²}{\wurzel{1+x^{3}}}}dx [/mm]
(iii) [mm] \integral_{0}^{2}{(x²-x)logx dx} [/mm]


Meine Lösungen:

Aufg.4
(i) Hierfür hab ich eine Formel für uneigentliche Integrale gefunden, die evtl passen könnte:
... = [mm] [\bruch{2}{\wurzel{4q-p²}}arctan\bruch{2x+p}{\wurzel{4q-p²}}] [/mm] = einsetzen der Grenzen = arctan2 - arctan1 = arctan2 - [mm] \bruch{\pi}{4} [/mm]

(ii) Ich substituiere z=1+x³ und erhalte:
[mm] \integral_{1}^{9}{\bruch{1}{3\wurzel{z}}dz} [/mm] = einsetzen der Grenzen = [mm] \bruch{1}{3}ln3 [/mm]

(iii) Hier erhalte ich nach partieller Integration u'(x) = x²-x und v(x)=logx:
[mm] \bruch{2}{3}log2 [/mm] + [mm] \bruch{1}{9} [/mm]


        
Bezug
diverse Aufgaben: Aufgabe (ii)
Status: (Antwort) fertig Status 
Datum: 20:02 Di 19.02.2008
Autor: Loddar

Hallo diecky!


> (ii) Ich substituiere z=1+x³ und erhalte: [mm]\integral_{1}^{9}{\bruch{1}{3\wurzel{z}}dz}[/mm]

[ok] Richtig!


> = einsetzen der Grenzen = [mm]\bruch{1}{3}ln3[/mm]

[notok] Wie kommst Du hier auf den [mm] $\ln(...)$ [/mm] ?
Wie lautet denn Deine Stammfunktion?

Du kannst doch schreiben:  [mm] $\bruch{1}{3*\wurzel{z}} [/mm] \ = \ [mm] \bruch{1}{3}*z^{-\bruch{1}{2}}$ [/mm] .


Gruß
Loddar


Bezug
        
Bezug
diverse Aufgaben: Aufgabe (iii)
Status: (Antwort) fertig Status 
Datum: 20:06 Di 19.02.2008
Autor: Loddar

Hallo diecky!


Dein Ansatz ist sehr gut und richtig! Aber bist Du sicher, dass die untere Grenze hier [mm] $x_u [/mm] \ = \ [mm] \red{0}$ [/mm] heißen soll? Denn für diesen Wert ist [mm] $\log(x)$ [/mm] gar nicht definiert.


Gruß
Loddar


Bezug
                
Bezug
diverse Aufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Di 19.02.2008
Autor: diecky

Öhm..ja..komischerweise geht das Integral von 0 bis 2,aber du hast recht: für 0 ist log(x) nicht definiert...und nu? Ist die Lösung dann nicht definiert?:-)

Bezug
                        
Bezug
diverse Aufgaben: uneigentliches Integral
Status: (Antwort) fertig Status 
Datum: 10:56 Mi 20.02.2008
Autor: Loddar

Hallo diecky!


Sollte die untere Grenze tatsächlich [mm] $x_u [/mm] \ = \ 0$ lauten, musst Du ein sogenanntes "uneigentliches Integral" mittels Grenzwertbetrachtung berechnen:

[mm] $$\integral_{0}^{2}{\left(x^2-x\right)*\log(x) \ dx} [/mm] \ = \ [mm] \limes_{u\rightarrow 0}\integral_{u}^{2}{\left(x^2-x\right)*\log(x) \ dx} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
        
Bezug
diverse Aufgaben: Aufgabe (i)
Status: (Antwort) fertig Status 
Datum: 20:08 Di 19.02.2008
Autor: Loddar

Hallo diecky!


Deine Formel habe ich nicht überprüft. Du kannst ja umformen:

[mm] $$\bruch{1}{x^2-2x+2} [/mm] \ = \ [mm] \bruch{1}{x^2-2x+1+1} [/mm] \ = \ [mm] \bruch{1}{(x-1)^2+1}$$ [/mm]
Das ergibt dann als Stammfunktion: [mm] $\arctan(x-1)$ [/mm] .

Damit stimmt auch Dein Ergebnis.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de