www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - dividierte differenzen
dividierte differenzen < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dividierte differenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Di 03.07.2012
Autor: simplify

Aufgabe
Bestimme ein Polynom 3. Grades mit p(0)=p'(0)=1, p(1)=p'(1)=1 mit Newton- oder Lagrange-Form.

Hallöchen...
so wirklich ein Problem mit der Aufgabe habe ich nicht,ich weiß nur nicht wie ich f [mm] [x_{2},x_{3}] [/mm] berechne,weil die Stützstellen doch zusammenfallen.
ich weiß,dass ich jetzt folgende Formel verwenden muss:
[mm] [x_{0},...,x_{k}]=\bruch{1}{k!}f^{(k)}(x_{0}) [/mm]
Da stehe ich jetzt aber irgendwie aufm Schlauch,weil ich nicht genau weiß wie ich damit [mm] f[x_{2},x_{3}] [/mm] berechne.

[mm] f[x_{2},x_{3}]=\bruch{1}{3!}f^{(3)}(0)=\bruch{1}{6}...? [/mm]

        
Bezug
dividierte differenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Di 03.07.2012
Autor: MathePower

Hallo simplify,

> Bestimme ein Polynom 3. Grades mit p(0)=p'(0)=1,
> p(1)=p'(1)=1 mit Newton- oder Lagrange-Form.
>  Hallöchen...
>  so wirklich ein Problem mit der Aufgabe habe ich nicht,ich
> weiß nur nicht wie ich f [mm][x_{2},x_{3}][/mm] berechne,weil die
> Stützstellen doch zusammenfallen.
>  ich weiß,dass ich jetzt folgende Formel verwenden muss:
>  [mm][x_{0},...,x_{k}]=\bruch{1}{k!}f^{(k)}(x_{0})[/mm]
>  Da stehe ich jetzt aber irgendwie aufm Schlauch,weil ich
> nicht genau weiß wie ich damit [mm]f[x_{2},x_{3}][/mm] berechne.
>  
> [mm]f[x_{2},x_{3}]=\bruch{1}{3!}f^{(3)}(0)=\bruch{1}{6}...?[/mm]  


Allgemein berechnet sich das so:

[mm]f\left[{x_{i}, \ x_{i+1},\ ..., \ x_{i+k}\right]=\bruch{1}{k!}f_{r\left(i)+k}[/mm]

Wobei [mm]r=r\left(i\right)[/mm] der kleinste Index ist, mit

[mm]x_{r}=x_{r+1}=\ .... \ = x_{i}[/mm]

Das gilt für die Newton-Form.


Gruss
MathePower

Bezug
                
Bezug
dividierte differenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Di 03.07.2012
Autor: simplify

Ehrlich gesagt verstehe ich es immernoch nicht.In meiner Musterlösung sollte f [mm] [x_{2},x_{3}]=1 [/mm] rauskommen.aber wie?
da ich ja schon [mm] \bruch{1}{6} [/mm] habe muss ja [mm] f^{(k)}(x_{0})=6 [/mm] sein?!?

Bezug
                        
Bezug
dividierte differenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Di 03.07.2012
Autor: MathePower

Hallo simplify,


> Ehrlich gesagt verstehe ich es immernoch nicht.In meiner
> Musterlösung sollte f [mm][x_{2},x_{3}]=1[/mm] rauskommen.aber
> wie?


Damit ist zunächst i=2 und k=1.


>  da ich ja schon [mm]\bruch{1}{6}[/mm] habe muss ja [mm]f^{(k)}(x_{0})=6[/mm]
> sein?!?


Es ist nun das kleinste r zu bestimmen, für das

[mm]x_{r}=x_{i}=x_{2}[/mm]

gilt.

Zufälligerweise ist r=i=2.

Damit ergibt sich

[mm]f\left[x_{2},x_{3}\right]=\bruch{1}{1!}*f_{2+1}=p'\left(1\right)[/mm]


Gruss
MathePower

Bezug
                                
Bezug
dividierte differenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Di 03.07.2012
Autor: simplify

ahh...vielen dank.jetzt passt alles.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de