www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - duale Basis
duale Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

duale Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Sa 21.05.2005
Autor: gymnozist

Hallo!
Ich hab nur eine kurze Frage.

Ich hab versucht die duale Basis zu dieser
[mm] b_1=\pmat{ 1 \\ 2 \\ 0 \\ -3 } [/mm]
[mm] b_2=\pmat{ 3 \\ 5 \\ 4 \\ 1} [/mm]
[mm] b_3=\pmat{ -1 \\ -1 \\ -3 \\ -5} [/mm]
[mm] b_4=\pmat{ 3 \\ 3 \\ 1 \\ -2} [/mm]
zu berechnen.

Ich bin auf dieses Ergebnis gekommen:
[mm] c_1=\pmat{-5 & 27 & -34 & 16} [/mm]
[mm] c_2=\pmat{2 & -13 & 17 & -8} [/mm]
[mm] c_3=\pmat{3 & -18 & 23 & -11} [/mm]
[mm] c_4=\pmat{1 & -2 & 2 & -1} [/mm]

Jetzt würde ich gern wissen, ob das so stimmt!
Reicht es wirklich, wenn ich die basis in eine Matrix schreibe, diese invertiere und dann die Zeilen, als duale Basis nehme?

Danke!

        
Bezug
duale Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 So 22.05.2005
Autor: taura

Hi Sebastian!

Ich habs mal nachgerechnet, das stimmt soweit.

Allerdings wäre es vermutlich sinnvoller, die Elemente aus dem Dualraum auch wirklich als Abbildungen zu schreiben, in deinem Fall also:

[mm]f_1(x,y,z,w)=-5x+27y-34z+16w[/mm]
[mm]f_2(x,y,z,w)=2x-13y+17z-8w[/mm]
[mm]f_3(x,y,z,w)=3x-18y+23z-11w[/mm]
[mm]f_4(x,y,z,w)=x-2y+2z-w[/mm]

Deine "Vektoren" sind die Darstellungsmatrizen der Abbildungen bzgl. der kanonischen Basis.
Das mit dem Invertieren der Matrix klappt immer dann, wenn du Vektoren aus dem [mm]\IR^n[/mm] bzgl. der kanonischen Basis hast, denn genau dann entspricht die Abbildung eines Vektors der Multiplikation des Vektors mit der Abbildungsmatrix (in diesem Fall das kanonische Skalarprodukt der beiden Vektoren). Wenn du dir jetzt nochmal anschaust, was passiert wenn du die Matrix, die du erhälst wenn du deine Basis in die Spalten schreibst, mit ihrer Inversen multiplizierst, und wie die duale Basis definiert ist, dann siehst du vielleicht selbst, warum es funktioniert?

Hoffe ich konnte dir helfen, falls noch irgendwas unklar ist, frag einfach nochmal nach!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de