www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - duales Simplexverfahren
duales Simplexverfahren < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

duales Simplexverfahren: komplementärer Schlupf
Status: (Frage) überfällig Status 
Datum: 20:57 Sa 04.04.2009
Autor: munch

Aufgabe
Hallo

Gegeben sei das lineare Optimierungsproblem

(P)

max [mm] 2x_1 [/mm] + [mm] 3x_2 [/mm] + [mm] 5x_3 [/mm]

bei

[mm] x_1 [/mm] + [mm] 2x_2 [/mm] + [mm] 5x_3 \le [/mm] -1

[mm] 6x_1 +2x_3 \le [/mm] 1

[mm] x_3 \le [/mm] 0

[mm] x_1 [/mm] + [mm] x_2 [/mm] + [mm] 3x_3 \le [/mm] -2

[mm] x_2 \le [/mm] 0

mit dem Optimalpunkt x* = (-1/2 , 0 , [mm] -1/2)^T [/mm]

Bestimme mit Hilfe eines Satzes vom komplementären Schlupf einen Optimalpunkt des zu (P) dualen Problems

Lösung

Das duale Problem lautet
(D) min [mm] -y_1 [/mm] + [mm] y_2 [/mm] - [mm] 2y_4 [/mm]

bei [mm] y_1 [/mm] + [mm] 6y_2 [/mm] + [mm] y_4 [/mm] = 2

[mm] 2y_1 [/mm] + [mm] y_4+y_5 [/mm] = 3

[mm] y_1 [/mm] + [mm] 2y_2 [/mm] + [mm] y_3 [/mm] + [mm] 3y_4 [/mm] = 5

[mm] y_i \ge [/mm] 0

Erste Frage: Warum gilt in den drei Gleichungen Gleichheit und nicht überall [mm] \ge? [/mm]

x* ist Lösung von (P)
Die 2. und 3. Ungleichung sind nicht aktiv.

Daher folgt mit dem Satz des Komplementären Schlupfes [mm] y_2 [/mm] * = [mm] y_3 [/mm] * = 0

Zweite Frage: Weiß jemand, was es bedeutet, dass die 2. und 3. Ungleichung nicht aktiv sind?

Ich habe da nicht die geringste Ahnung, dachte erst, dass [mm] y_i [/mm] ganzzahlig (sogar größer gleich 0) sind und durch das [mm] 6y_2 [/mm] folgt, [mm] y_2 [/mm] muss = 0 sein, weil [mm] 6y_2 [/mm] = 6*1 > 2... Also dann wäre die eine Ungleichung nicht mehr erfüllt.

Ich sehe einfach nicht, wieso [mm] y_2 [/mm] und [mm] y_3 [/mm] gestrichen werden bzw. auf Null gesetzt werden. Kann mir das jemand erläutern?

Grüße, munch

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
duales Simplexverfahren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:19 Mo 06.04.2009
Autor: munch


> Hallo
>  
> Gegeben sei das lineare Optimierungsproblem
>  
> (P)
>
> max [mm]2x_1[/mm] + [mm]3x_2[/mm] + [mm]5x_3[/mm]
>
> bei
>  
> [mm]x_1[/mm] + [mm]2x_2[/mm] + [mm]5x_3 \le[/mm] -1
>  
> [mm]6x_1 +2x_3 \le[/mm] 1
>  
> [mm]x_3 \le[/mm] 0
>  
> [mm]x_1[/mm] + [mm]x_2[/mm] + [mm]3x_3 \le[/mm] -2
>  
> [mm]x_2 \le[/mm] 0
>  
> mit dem Optimalpunkt x* = (-1/2 , 0 , [mm]-1/2)^T[/mm]
>  
> Bestimme mit Hilfe eines Satzes vom komplementären Schlupf
> einen Optimalpunkt des zu (P) dualen Problems
>  Lösung
>  
> Das duale Problem lautet
>  (D) min [mm]-y_1[/mm] + [mm]y_2[/mm] - [mm]2y_4[/mm]
>  
> bei [mm]y_1[/mm] + [mm]6y_2[/mm] + [mm]y_4[/mm] = 2
>  
> [mm]2y_1[/mm] + [mm]y_4+y_5[/mm] = 3
>  
> [mm]y_1[/mm] + [mm]2y_2[/mm] + [mm]y_3[/mm] + [mm]3y_4[/mm] = 5
>  
> [mm]y_i \ge[/mm] 0
>  
> Erste Frage: Warum gilt in den drei Gleichungen Gleichheit
> und nicht überall [mm]\ge?[/mm]
>  
> x* ist Lösung von (P)
>  Die 2. und 3. Ungleichung sind nicht aktiv.
>
> Daher folgt mit dem Satz des Komplementären Schlupfes [mm]y_2[/mm] *
> = [mm]y_3[/mm] * = 0
>  
> Zweite Frage: Weiß jemand, was es bedeutet, dass die 2. und
> 3. Ungleichung nicht aktiv sind?
>  
> Ich habe da nicht die geringste Ahnung, dachte erst, dass
> [mm]y_i[/mm] ganzzahlig (sogar größer gleich 0) sind und durch das
> [mm]6y_2[/mm] folgt, [mm]y_2[/mm] muss = 0 sein, weil [mm]6y_2[/mm] = 6*1 > 2... Also
> dann wäre die eine Ungleichung nicht mehr erfüllt.
>  
> Ich sehe einfach nicht, wieso [mm]y_2[/mm] und [mm]y_3[/mm] gestrichen werden
> bzw. auf Null gesetzt werden. Kann mir das jemand
> erläutern?
>  
> Grüße, munch
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Weiß das denn wirklich keiner?

Bezug
                
Bezug
duales Simplexverfahren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Do 07.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
duales Simplexverfahren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Di 05.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de