www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - e-Fkt hoch ln-Fkt.
e-Fkt hoch ln-Fkt. < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Fkt hoch ln-Fkt.: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:02 Mo 11.01.2010
Autor: pueppiii

Aufgabe
zu zeigen: S = -k [mm] \summe_{i=1}^{W} p_{i} [/mm] ln [mm] p_{i} [/mm] soll gleich sein mit
                  [mm] S_{q} [/mm] = k [mm] \bruch{1-\summe_{i=1}^{W} p_{i}^{q}}{q-1} [/mm]

Hallo,

ich habe grad eine kleine Verständnislücke bzw. stehe wohl grad voll auf dem SChlauch!!

[mm] S_{1}\equiv \limes_{q\rightarrow\1}S_{q} [/mm] = k [mm] \limes_{q\rightarrow\1}\bruch{1-\summe_{i=1}^{W} p_{i} exp[(q-1)lnp_{i}]}{q-1} [/mm] soll gleich -k [mm] \summe_{i=1}^{W} p_{i} [/mm] ln [mm] p_{i} [/mm] sein, aber das verstehe ich irgendwie nicht

D.h. heisst übrigens q gegen 1!

Wie löse ich exp[(q-1)lnp]?
Ich weiß dass [mm] e^{ln p} [/mm] = p ist, aber was mache ich dann mit dem (q-1)? Bleibt das als Faktor stehen??

Danke für eure Hilfe!!


        
Bezug
e-Fkt hoch ln-Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Mo 11.01.2010
Autor: Teufel

Hi!

[mm] e^{(q-1)*ln(p)}=(e^{ln(p)})^{q-1}=p^{q-1} [/mm]

[anon] Teufel

Bezug
                
Bezug
e-Fkt hoch ln-Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Mo 11.01.2010
Autor: pueppiii

Ok, danke dir Teufel, aber wie zeige ich den Grenzfall!!

Ich kann ja Regel von L´Hospital anwenden, da Zähler und Nenner 0 sind, dann muss ich beide differnzieren, das habe ich getan, aber irgendwie komme ich dann nicht auf - k [mm] \summe_{i=1}^{W}p_{i} lnp_{i} [/mm]


Noch wichtig zu wissen, dass [mm] \summe_{i=1}^{W}p_{i}= [/mm] 1 ist!

Bezug
                        
Bezug
e-Fkt hoch ln-Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Di 12.01.2010
Autor: Teufel

Hi nochmal!

Also du hast:

[mm] S_q=k*\bruch{1-\summe_{i=1}^{W}p_i^q}{q-1}. [/mm]

[mm] \limes_{q\rightarrow 1}(k*\bruch{1-\summe_{i=1}^{W}p_i^q}{q-1})="\bruch{0}{0}" [/mm] (da für q [mm] \to [/mm] 1 die Summe gegen [mm] \summe_{i=1}^{W}p_i=1 [/mm] geht), daher kannst du den L'Hospital anwenden.

Also ist der Limes gleich [mm] \limes_{q\rightarrow 1}(k*\bruch{-\summe_{i=1}^{W}p_i^q*ln(p_i)}{1})=-k*\summe_{i=1}^{W}p_i*ln(p_i)=S. [/mm]

Alles klar?

Denn [mm] (p_i^q)'=p_i^q*ln(p_i) [/mm] und für wenn q gegen 1 geht bleibt nur [mm] p_i*ln(p_i) [/mm] übrig.

[anon] Teufel

Bezug
                                
Bezug
e-Fkt hoch ln-Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Fr 15.01.2010
Autor: pueppiii

Ja dankeschön für deine Hilfe, hatte es so ähnlich rausbekommen!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de