www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - e-Fkt und komplexe Zahlen
e-Fkt und komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Fkt und komplexe Zahlen: Problem mit Musterlösung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:27 Mo 28.01.2008
Autor: Jaqueline1980

Aufgabe
Warum ist [mm] e^{-2aix}=1 [/mm] für a in [mm] \IR, [/mm] x in [0,t] und t>0
bzw.
[mm] e^{-2ai(t-x)} [/mm] = 1  für a in [mm] \IR, [/mm] x in [t,0] und t<0

Diese Aufgabe, bzw. Frage stellt sich mir, beim betrachten einer Musterlösung, die ich vor mir liegen habe. Kann mir da jmd. weiterhelfen? Wäre nett. wenn mir da einer weiterhelfen könnte.

        
Bezug
e-Fkt und komplexe Zahlen: ähnliche Frage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Mo 28.01.2008
Autor: Bastiane

Hallo Jaqueline1980!

> Warum ist [mm]e^{-2aix}=1[/mm] für a in [mm]\IR,[/mm] x in [0,t] und t>0
>  bzw.
> [mm]e^{-2ai(t-x)}[/mm] = 1  für a in [mm]\IR,[/mm] x in [t,0] und t<0
>  Diese Aufgabe, bzw. Frage stellt sich mir, beim betrachten
> einer Musterlösung, die ich vor mir liegen habe. Kann mir
> da jmd. weiterhelfen? Wäre nett. wenn mir da einer
> weiterhelfen könnte.

Ist ja lustig, eine sehr ähnliche Frage wollte ich auch gerade stellen. Allerdings ist bei mir folgender Umformungsschritt gemacht worden:

[mm] $\int_{\IR}u|e^{2\pi i\omega u}(g(u-t)|^2\:du=\int_{\IR}u|g(u-t)|^2\:du$ [/mm]

und daneben steht: [mm] |e^{2\pi i\omega u}|=1. [/mm]

Wenn [mm] \omega [/mm] und $u$ ganze Zahlen wären, dann wäre das ja klar, aber so? Ich habe das gerade mal mit dem Taschenrechner ausprobiert und bin eigentlich der Meinung, dass es gar nicht stimmt, aber dann passt ja die ganze Lösung nicht. [kopfkratz]

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
e-Fkt und komplexe Zahlen: hat sich geklärt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 Mo 28.01.2008
Autor: Bastiane

Hallo nochmal!

Oh, meine Frage hat sich geklärt (dabei hatte ich auch schon vor dem Posten drüber nachgedacht...). Und zwar berechnet sich der Betrag einer komplexen Zahl ja als Wurzel der Summe der Quadrate von Real- und Imaginärteil, und da [mm] \sin^2+\cos^2=1, [/mm] ist das Ganze dann auch =1. Hatte da wohl irgendwie den Betrag falsch berechnet... :-)

Viele Grüße und vllt bekomme ich dein Problem ja auch noch raus
Bastiane
[cap]


Bezug
        
Bezug
e-Fkt und komplexe Zahlen: dummer Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Mo 28.01.2008
Autor: Jaqueline1980

Habe einen dummen Fehler gemacht. Dank der Mitteilung von Bastiane ist mir aufgefallen, dass ich die Betragsstriche übersehen habe (sahen so aus wie Klammern).

also nochmals, damit es hier korrekt steht:

[mm] \left| e^{-2aix} \right| [/mm] = [mm] \left| e^0 (cos (-2ax) + i sin(-2ax)) \right| [/mm] = [mm] \left| (cos (-2ax) + i sin(-2ax)) \right| [/mm]

So und der Betrag ist, wie schon Bastiane richtig sagte die Wurzel der Summe der Quadrate von Real- und Imaginärteil.

und das ist eben:

[mm] cos^2 [/mm] (-2ax) + [mm] sin^2 [/mm] (-2ax) = 1


- Oh man, warum einfach wenn es auch leicht geht.

Bezug
                
Bezug
e-Fkt und komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 Di 29.01.2008
Autor: Marcel

Hallo Jaqueline,

ja, man kann das mit dem trigonometrischen Pythagoras beweisen. Man kann das aber auch anders begründen:
Man begründet kurz, dass [mm] $\overline{\exp(z)}=\exp(\overline{z})$ [/mm] für komplexes $z$ (z.B. mittels der Reihe [mm] $\exp(z)=\sum_{k=0}^\infty \frac{z^k}{k!}$) [/mm] und dann gilt [mm] $|z|^2=z*\overline{z}$. [/mm]

Daraus ergibt sich für $z=i*x$ mit $x [mm] \in \IR$ [/mm] und der Funktionalgleichung von $z [mm] \mapsto \exp(z)$: [/mm]
[mm] $|\exp(i*x)|^2=\exp(i*x)*\overline{\exp(i*x)}=\exp(i*x)*\exp(\overline{i*x})=\exp(i*x)*\exp(-i*x)=\exp(i*x-i*x)=\exp(0)=1$ [/mm]

Man sollte diese zwei Dinge übrigens immer im Hinterkopf haben:
Für alle $x [mm] \in \IR$ [/mm] gilt:
(i)  [mm] $|\exp(i*x)|=1$ [/mm]
(ii) [mm] $\exp(i*x)=\cos(x)+i*\sin(x)$ [/mm]

(Also [mm] $Re(\exp(i*x))=\cos(x)$ [/mm] und [mm] $Im(\exp(i*x))=\sin(x)$.) [/mm]

Gruß,
Marcel

Bezug
        
Bezug
e-Fkt und komplexe Zahlen: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:46 Di 29.01.2008
Autor: Jaqueline1980

Aufgabe
[mm] \lim_{a \to \infty} \integral_{-a}^{a}{e^{-(-x+it)^2} dx} [/mm] = [mm] \lim_{a \to \infty}\integral_{-a}^{a}{e^{-(x+it)^2} dx} [/mm]

Hier stehe ich erstmal vor einem ähnliches Problem. Kann mir einer einen Tipp geben, oder einen Denkanstoß. Hier fehlen definitiv keine Betragsstriche !!!! :-)

Bezug
                
Bezug
e-Fkt und komplexe Zahlen: Substitution
Status: (Antwort) fertig Status 
Datum: 09:55 Di 29.01.2008
Autor: rainerS

Hallo!

> [mm]\lim_{a \to \infty} \integral_{-a}^{a}{e^{-(-x+it)^2} dx}[/mm] =
> [mm]\lim_{a \to \infty}\integral_{-a}^{a}{e^{-(x+it)^2} dx}[/mm]
>  
> Hier stehe ich erstmal vor einem ähnliches Problem. Kann
> mir einer einen Tipp geben, oder einen Denkanstoß. Hier
> fehlen definitiv keine Betragsstriche !!!! :-)

Mache im linken Integral die Substitution [mm]x\mapsto -x[/mm].

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de