www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - e funktion ableiten
e funktion ableiten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e funktion ableiten: stimmt das so?
Status: (Frage) beantwortet Status 
Datum: 20:13 Mi 11.10.2006
Autor: Gartenschlauch

Hallo,
wenn ich die Funktion e^(2x) ableite kommt e^(2x)*2 raus, oder?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
e funktion ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mi 11.10.2006
Autor: Event_Horizon

Sofern du [mm] $2*e^{2x}$ [/mm]  meinst, JA!

Bezug
                
Bezug
e funktion ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Mi 11.10.2006
Autor: BKM

Hallo und guten Abend.

Ich finde ein wenig mehr Höflichkeit und weniger Arroganz bei der Beantwortung der gestellten Frage sind angebracht ( das gilt meiner Meinung nach, ganz allgemein!). Hier meine Erklärung der Frage.
[mm] \black\frame\black\big\ [/mm] Definition:

Die Exponentialfunktion f(x)=exp(x) wird [mm] \big\ e\-Funktion [/mm]
genannt.
Die [mm] e\-Funktion [/mm] ist mit ihrer Ableitung identisch, das heißt für f(x)=exp(x) gilt:
f'(x)=exp(x), [mm] \(x\el\ \IR) [/mm]

Ganz allgemein gilt für die Ableitung der e-Funktion:

[mm] \black\frame\black\big\ [/mm] Satz:

Für die Ableitung der Funktion f(x)=a*e^kx mit a, k [mm] \el\ \IR [/mm] gilt:
f'(x)=k*a*e^kx  

Das heisst auf ihre Frage lautet die Antwort nach dem oben gesagten,
das ihre Fkt. abgeleitet  2*e^2x ergibt!

Sollten sie noch Fragen haben, so stellen sie doch gerne hier noch einmal.

BKM


Bezug
                        
Bezug
e funktion ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:48 Mi 11.10.2006
Autor: hase-hh

moin bkm,

ich hoffe nicht, dass deine spitze gegen mich gerichtet ist/war; das müßte ich dann in aller form zurückweisen.

hier im forum unterhalten wir uns per du. ich war nicht herablassend, habe nur interessiert nachgefragt, was mr. gartenschlauch unter nachdifferenzieren versteht.

gute nacht & liebe grüße @all.
wolfgang






Bezug
        
Bezug
e funktion ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 11.10.2006
Autor: Gartenschlauch

mmh. naja ich muss die 2x doch dann noch nachdifferenzieren,oder?

Bezug
                
Bezug
e funktion ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Mi 11.10.2006
Autor: hase-hh

moin mr. gartenschlauch,

nein, das war's. ich weiss zwar nicht was du in aller welt mit nachdifferenzieren meinst, klar ist, mein vorredner hat recht.


[mm] f(x)=e^{2x} [/mm]

[mm] f'(x)=2*e^{2x} [/mm]

gemäß kettenregel innere ableitung mal äußere ableitung.


gruss
wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de