www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - echte Untervektorräume
echte Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

echte Untervektorräume: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:16 Mi 28.11.2007
Autor: Nadinejena

Aufgabe
K sei ein unendlicher Körper, und U1,...,Un seien echte(!!!) Vektorräume eines K-Vektorraumes V.
Zeigen Sie :

[mm] V\not= U1\cup [/mm] ... [mm] \cup [/mm] Un.

So das ist also die Aufgabe.
Also ich weiß,was ein Untervektorraum ist. Kenne auch die Krieterien dazu. K ist der endliche Körper. Element dieses Körpers sind zum Beispiel Skalare.weiß ich. die Eigenschaften von der Vereinigung von Mengen kenne ich.
Kann mir die AUfgabe nur so vorstellen,dass dadurch das K unendlich ist, auch der K-Vektorraum V unendlich ist, denn in den Krieterien weißt man den Vektorraum ja mit einem Skalar nach (unter anderem). Und die unterVektorräume sind ja begrenzt bis Un . Meine frage ist, wie mache ich mit dem wissen meinen beweis? STimmt das alles so? Und wie ist ein ECHTER VEktorraum definiert.

Würde mich über eine schnelle Hilfe freuen, denn es eilt ein bischen:)

Danke schonmal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
echte Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Mi 28.11.2007
Autor: Somebody


> K sei ein unendlicher Körper, und U1,...,Un seien
> echte(!!!) Vektorräume eines K-Vektorraumes V.
>  Zeigen Sie :
>  
> [mm]V\not= U1\cup[/mm] ... [mm]\cup[/mm] Un.
>  So das ist also die Aufgabe.
>  Also ich weiß,was ein Untervektorraum ist. Kenne auch die
> Krieterien dazu. K ist der endliche Körper. Element dieses
> Körpers sind zum Beispiel Skalare.weiß ich. die
> Eigenschaften von der Vereinigung von Mengen kenne ich.
>  Kann mir die AUfgabe nur so vorstellen,dass dadurch das K
> unendlich ist, auch der K-Vektorraum V unendlich ist, denn
> in den Krieterien weißt man den Vektorraum ja mit einem
> Skalar nach (unter anderem). Und die unterVektorräume sind
> ja begrenzt bis Un . Meine frage ist, wie mache ich mit dem
> wissen meinen beweis? STimmt das alles so? Und wie ist ein
> ECHTER VEktorraum definiert.
>  
> Würde mich über eine schnelle Hilfe freuen, denn es eilt
> ein bischen:)

Diese Aufgabe wurde in diesem Forum bereits einmal diskutiert: siehe hier. Ich bin allerdings nicht sicher, ob Dir die damalige Diskussion wirklich helfen wird (sie verlief für mich selbst auch etwas peinlich, weil ich damals die Bedingung "unendlicher Körper" mit der Bedingung "Körper der Charakteristik 0" durcheinander brachte).

Bezug
                
Bezug
echte Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Mi 28.11.2007
Autor: Nadinejena

Hilft mir wirklich nicht viel weiter...
hat noch jemand eine idee?!bitte:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de