www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - eigenschaften des integrals
eigenschaften des integrals < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eigenschaften des integrals: Frage
Status: (Frage) beantwortet Status 
Datum: 21:51 Di 19.04.2005
Autor: ju2327

ich komme bei einer aufgabe über integralrechnung leider nicht weiter. ich muss zeigen, wenn eine funktion f : [a, b] -> R stetig, nichtnegativ, und der integralwert über [a, b] null ist, so ist f(x) = 0 für alle x aus [a, b]. anschaulich ist es mir schon klar, dass die konstante funktion f(x) = 0 den integralwert = 0 hat. ich habe nur probleme, dieses formal herzuleiten. vielen dank für jede hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
eigenschaften des integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Di 19.04.2005
Autor: choosy

Hallo erstmal, ich schau mal was sich da machen lässt

> ich komme bei einer aufgabe über integralrechnung leider
> nicht weiter. ich muss zeigen, wenn eine funktion f : [a,
> b] -> R stetig, nichtnegativ, und der integralwert über [a,
> b] null ist, so ist f(x) = 0 für alle x aus [a, b].
> anschaulich ist es mir schon klar, dass die konstante
> funktion f(x) = 0 den integralwert = 0 hat. ich habe nur
> probleme, dieses formal herzuleiten. vielen dank für jede
> hilfe

hmmm die richtung die dir klar ist und die du zeigen willst ist aber nicht gefordert......, gefordert ist folgendes:

nehmen wir mal an es ex. [mm] $x_0 \in [/mm] [a,b]$ mit [mm] $f(x_0)\neq [/mm] 0$ (d.h. wir nehmen an f ist nicht identisch 0 )
da f stetig ist ex. dann [mm] $\delta [/mm] >0$ mit
[mm] $f(x)\neq [/mm] 0$ für alle [mm] $x\in (x_0 -\delta, x_0 +\delta)$ [/mm]
da f nicht negativ ist gilt also
$f(x) > 0$ für alle [mm] $x\in (x_0 -\delta, x_0 +\delta)$ [/mm]
also insbesondere
[mm] $\int_{x_0 -\delta}^{x_0 +\delta} [/mm] f(x) dx > 0$

(falls das unklar ist: stetige funktionen nehmen auf kompakta ein minumum an, damit ist das integral grösser dem min  von f auf  [mm] $(x_0 -\delta, x_0 +\delta)$ [/mm] mal [mm] $2\delta$) [/mm]

dies ist ein widerspruch zur annahme, denn
[mm] $\int_{a}^{b} [/mm] f(x) dx = [mm] \underbrace{\int_{a}^{x_0 -\delta} f(x) dx}_{\geq0} +\underbrace{\int_{x_0 -\delta}^{x_0 +\delta} f(x) dx}_{>0} +\underbrace{\int_{x_0 +\delta}^{b} f(x) dx}_{\geq 0,\text{ da f nicht neg.}} [/mm] >0$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de