www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - eigenwertbestimmung 3x3 matrix
eigenwertbestimmung 3x3 matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eigenwertbestimmung 3x3 matrix: aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:54 Di 27.07.2010
Autor: heli-tac

Aufgabe
die matrix  A= [mm] \pmat{ 2 & -1 & 2 \\ -1 & 2 & -2 \\ 2 & -2 & 5 } [/mm]

hat u.a. 7 als eigenwert. Welche sind die anderen?
Ist A diagonalisierbar? wenn ja, gebe die diagonalform an.
  

Hallo,
ich versuche mich gerade an der oben stehenden aufgabe. bisher bin ich so weit gekommen, dass ich jetzt das polynom stehen habe von:
0 = [mm] \lambda^{3} [/mm] - [mm] 9\lambda^{2} [/mm] + [mm] 17\lambda [/mm] - 17

Ich hoffe das ist erstmal richtig (zur berechnung der eigenwerte).
So und nun muss ich das lösen, sodass ich die nullstellen bekomme - und da liegt das problem. Wie mache ich das?
Und das mit der diagonalisierbarkeit weiß ich leider such nicht.
Kann mir da jemand helfen?

Lg Heli-tac

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
eigenwertbestimmung 3x3 matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Di 27.07.2010
Autor: fred97


> die matrix  A= [mm]\pmat{ 2 & -1 & 2 \\ -1 & 2 & -2 \\ 2 & -2 & 5 }[/mm]
>  
> hat u.a. 7 als eigenwert. Welche sind die anderen?
>  Ist A diagonalisierbar? wenn ja, gebe die diagonalform
> an.
>    
> Hallo,
> ich versuche mich gerade an der oben stehenden aufgabe.
> bisher bin ich so weit gekommen, dass ich jetzt das polynom
> stehen habe von:
>  0 = [mm]\lambda^{3}[/mm] - [mm]9\lambda^{2}[/mm] + [mm]17\lambda[/mm] - 17
>  
> Ich hoffe das ist erstmal richtig (zur berechnung der
> eigenwerte).


Nein, es ist nicht richtig.

Nochmal ran ! Berechne das char. Polynom p von A

In der Aufgabenstellung steht, dss p die Nullstelle 7 hat. Also mach Polynomdivision:

                  [mm] p(\lambda):(\lambda-7)= q(\lambda) [/mm]

Die weiteren Nullstellen von p sind die von q

> So und nun muss ich das lösen, sodass ich die nullstellen
> bekomme - und da liegt das problem. Wie mache ich das?
>  Und das mit der diagonalisierbarkeit weiß ich leider such
> nicht.


Warum machst Du Dich nicht schlau ? Sätze , def. aus der Vorlesung.

Tipp: A ist symmetrisch. Was bedeutet dies für Diagonalisierbarkeit ?

FRED

> Kann mir da jemand helfen?
>  
> Lg Heli-tac
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
eigenwertbestimmung 3x3 matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 Di 27.07.2010
Autor: heli-tac

Aha. Gut, dann versuch ich mich nochmal dran. Vielen dank erstmal.

lg Heli-tac

Bezug
        
Bezug
eigenwertbestimmung 3x3 matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Fr 30.07.2010
Autor: etoxxl

Guten Abend,
ich bereite mich gerade auf eine Klausur vor und rechne einige Aufgaben hier aus dem Forum.
Ist meine Lösung für diese Aufgabe so richtig?

Das char. Polynom lautet: [mm] (t-7)(t-1)^2 [/mm]
Um zu zeigen, dass die Matrix Diagonalisierbar ist,
prüfe ich die Eigenräume.
Es gilt:
dim(Eig(1)) = dim(Ker(A-E))=n-dim(Im(A-E)) = 3 - rk(A-E) = 3-1 = 2
dim(Eig(7)) = ... = 3- rk(A-7E) = 3-2 = 1
Daraus darf ich folgern dass die Matrix diagonalisierbar ist
und sie hat die folgende Form: Auf der Hauptdiagonalen stehen die 3 Eigenwerte 1,1,7.

Bezug
                
Bezug
eigenwertbestimmung 3x3 matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Fr 30.07.2010
Autor: ChopSuey

Hallo,

> Guten Abend,
>   ich bereite mich gerade auf eine Klausur vor und rechne
> einige Aufgaben hier aus dem Forum.
>  Ist meine Lösung für diese Aufgabe so richtig?
>  
> Das char. Polynom lautet: [mm](t-7)(t-1)^2[/mm]
>  Um zu zeigen, dass die Matrix Diagonalisierbar ist,
> prüfe ich die Eigenräume.

Auf was?

>  Es gilt:
>  dim(Eig(1)) = dim(Ker(A-E))=n-dim(Im(A-E)) = 3 - rk(A-E) =
> 3-1 = 2
>  dim(Eig(7)) = ... = 3- rk(A-7E) = 3-2 = 1
>  Daraus darf ich folgern dass die Matrix diagonalisierbar
> ist

Aus was?

>  und sie hat die folgende Form: Auf der Hauptdiagonalen
> stehen die 3 Eigenwerte 1,1,7.

Wieso ist denn deine Matrix nun diagonalisierbar?

Ich sehe bisher kein Argument, das dafür spricht.

Grüße
ChopSuey


Bezug
                        
Bezug
eigenwertbestimmung 3x3 matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Fr 30.07.2010
Autor: etoxxl


> Hallo,
>  
> > Guten Abend,
>  >   ich bereite mich gerade auf eine Klausur vor und
> rechne
> > einige Aufgaben hier aus dem Forum.
>  >  Ist meine Lösung für diese Aufgabe so richtig?
>  >  
> > Das char. Polynom lautet: [mm](t-7)(t-1)^2[/mm]
>  >  Um zu zeigen, dass die Matrix Diagonalisierbar ist,
> > prüfe ich die Eigenräume.
>  
> Auf was?

Auf die Dimension der Eigenräume.

>  
> >  Es gilt:

>  >  dim(Eig(1)) = dim(Ker(A-E))=n-dim(Im(A-E)) = 3 -
> rk(A-E) =
> > 3-1 = 2
>  >  dim(Eig(7)) = ... = 3- rk(A-7E) = 3-2 = 1
>  >  Daraus darf ich folgern dass die Matrix
> diagonalisierbar
> > ist
>  
> Aus was?

Aus dem Satz: (Zitat Wikipedia)
Ist eine Matrix diagonalisierbar, so ist die geometrische Vielfachheit ihrer Eigenwerte gleich der jeweiligen algebraischen Vielfachheit. Das bedeutet, die Dimension der einzelnen Eigenräume  stimmt jeweils mit der algebraischen Vielfachheit der entsprechenden Eigenwerte im charakteristischen Polynom der Matrix überein.


>  
> >  und sie hat die folgende Form: Auf der Hauptdiagonalen

> > stehen die 3 Eigenwerte 1,1,7.
>
> Wieso ist denn deine Matrix nun diagonalisierbar?
>  
> Ich sehe bisher kein Argument, das dafür spricht.
>  
> Grüße
>  ChopSuey
>  


Bezug
                                
Bezug
eigenwertbestimmung 3x3 matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Fr 30.07.2010
Autor: ChopSuey

Hallo,

> > Hallo,
>  >  
> > > Guten Abend,
>  >  >   ich bereite mich gerade auf eine Klausur vor und
> > rechne
> > > einige Aufgaben hier aus dem Forum.
>  >  >  Ist meine Lösung für diese Aufgabe so richtig?
>  >  >  
> > > Das char. Polynom lautet: [mm](t-7)(t-1)^2[/mm]
>  >  >  Um zu zeigen, dass die Matrix Diagonalisierbar ist,
> > > prüfe ich die Eigenräume.
>  >  
> > Auf was?
>  
> Auf die Dimension der Eigenräume.

Ok.

>  
> >  

> > >  Es gilt:

>  >  >  dim(Eig(1)) = dim(Ker(A-E))=n-dim(Im(A-E)) = 3 -
> > rk(A-E) =
> > > 3-1 = 2
>  >  >  dim(Eig(7)) = ... = 3- rk(A-7E) = 3-2 = 1
>  >  >  Daraus darf ich folgern dass die Matrix
> > diagonalisierbar
> > > ist
>  >  
> > Aus was?
>  
> Aus dem Satz: (Zitat Wikipedia)
>  Ist eine Matrix diagonalisierbar, so ist die geometrische
> Vielfachheit ihrer Eigenwerte gleich der jeweiligen
> algebraischen Vielfachheit. Das bedeutet, die Dimension der
> einzelnen Eigenräume  stimmt jeweils mit der algebraischen
> Vielfachheit der entsprechenden Eigenwerte im
> charakteristischen Polynom der Matrix überein.


Richtig. Du hast das an dieser Stelle aber nirgendwo erwähnt. Das solltest du zumindest kurz erwähnen, sonst stehen da nur Zahlen.

>  
>
> >  

> > >  und sie hat die folgende Form: Auf der Hauptdiagonalen

> > > stehen die 3 Eigenwerte 1,1,7.
> >
> > Wieso ist denn deine Matrix nun diagonalisierbar?
>  >  
> > Ich sehe bisher kein Argument, das dafür spricht.
>  >  
> > Grüße
>  >  ChopSuey
>  >  



Viele Grüße
ChopSuey


Bezug
                                        
Bezug
eigenwertbestimmung 3x3 matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Fr 30.07.2010
Autor: etoxxl

Alles klar, Danke!

Bezug
                
Bezug
eigenwertbestimmung 3x3 matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Sa 31.07.2010
Autor: fred97

Das alles hättest Du einfacher haben können:

A ist symmetrisch und somit diagonalisierbar

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de