www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - eigenwerte orthogonaler matrix
eigenwerte orthogonaler matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eigenwerte orthogonaler matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Mo 24.05.2010
Autor: Phecda

Hallo,
hätte eine Frage zu Eigenwerten
Sei A eine nxn Matrix über [mm] \IR, [/mm] welche orthogonal ist.

Fasst man B = [mm] 1/2(A+A^t) [/mm] als komplexe Matrix auf und ist [mm] \lambda \in \IC [/mm] ein Eigenwert von B, so gilt [mm] \lambda \in \IR [/mm] und [mm] -1<=\lambda [/mm] <= 1

Okay mein ansatz ist: [mm] \my \in \IC [/mm] ist der Eigenwert von A. dann ist [mm] 1/\my [/mm] der eigenwert von [mm] A^t. [/mm] (A ist orthogonal, kann man sich leicht überlegen)
Gut meine strategie ist nun zu zeigen, dass der betrag betragsmäßig kleiner 1 ist.

leider gelingt mir das nicht .... was mach ich falsch?

        
Bezug
eigenwerte orthogonaler matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Di 25.05.2010
Autor: ullim

Hi,

Du must zwei Dinge zeigen:

1. Für alle Eigenwerte [mm] \lambda [/mm] von B gilt [mm] \lambda \in \IR [/mm]
2. Für alle Eigenwerte [mm] \lambda [/mm] von B gilt -1 [mm] \le \lambda \le [/mm] 1

Zu 1.

Da B symetrisch ist, folgt die Behauptung aus der Tatsache, das jede symetrische Matrix nur reelle Eigenwerte besitzt. Der Bewies ist einfach.


Zu 2.

Sei x Eigenvektor von B mit Eigenwert [mm] \lambda [/mm] dann gilt

[mm] \lambda x=Bx=\bruch{1}{2}(A+A^t)x=\bruch{1}{2}Ax+\bruch{1}{2}A^tx [/mm] daraus folgt

[mm] |\lambda|*{\parallel{x}}\parallel \le \parallel{x}\parallel [/mm] wegen [mm] \parallel{Ax}\parallel=\parallel{x}\parallel [/mm] und der Dreiecksungleichung

also [mm] |\lambda|\le1 [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de