www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - einfache Graphentheorie
einfache Graphentheorie < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einfache Graphentheorie: Verständnisfragen
Status: (Frage) beantwortet Status 
Datum: 23:11 Mi 07.01.2009
Autor: pathethic

Aufgabe
Menge N(v) = { u [mm] \in [/mm] V | {u,v} [mm] \in [/mm] E} drückt die benachbarten Knoten zu v aus.

Bedeutet das für folgendes Beispiel:

u - v - r
     |
     s


N(v) = {u [mm] \in [/mm] V | {u,v,r,s} [mm] \in [/mm] E} = u,r,s

?


Frage 2:

Was ist gemeint mit:

"Adjazenslisten [mm] \rightarrow [/mm] wahre Größe eines Graphen"

Ist das so gemeint, das sie im Endeffekt ja die Anzahl von E, also |E| darstellen?

"Adjasenzmatritzen [mm] \rightarrow [/mm] per Definition [mm] |V|^2" [/mm]

also hier eher die Ordnung bestimmen als die Größe?

Okay soweit erstmal :)

        
Bezug
einfache Graphentheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Mi 07.01.2009
Autor: reverend

Inhaltlich ja, aber die Schreibweise ist wohl nicht richtig. Irritierend ist vor allem, dass die vorher allgemeine Variable u nun einen Knoten bezeichnet. Deine Lösungsmenge musst Du also anders beschreiben:

N(v)= {i [mm] \in [/mm] V | (i,v) [mm] \in [/mm] E} = {u,r,s}

da ja (u,v), (r,v), (s,v) [mm] \in [/mm] E.

Nebenbei: schreibt Ihr die Kanten wirklich in geschweiften Klammern?

> Frage 2:
>  
> Was ist gemeint mit:
>  
> "Adjazenslisten [mm]\rightarrow[/mm] wahre Größe eines Graphen"
>  
> Ist das so gemeint, das sie im Endeffekt ja die Anzahl von
> E, also |E| darstellen?

Das kommt ganz darauf an, welche Form von Adjazenzlisten Ihr verwendet! Für ungerichtete Graphen gibt es durchaus auch die Form, wo die Liste für jeden Knoten alle mit ihm verbundenen Knoten aufführt. Immerhin aber wird selbst in dieser Form kein Speicherplatz (darum gehts doch, oder?) für die nicht verbundenen Knoten aufgewandt.

> "Adjasenzmatritzen [mm]\rightarrow[/mm] per Definition [mm]|V|^2"[/mm]

Adjazenzmatrizen haben nun einmal die Größe [mm] v\times \a{}v [/mm] ...

> also hier eher die Ordnung bestimmen als die Größe?

Wieso das denn?
  

> Okay soweit erstmal :)

lg,
reverend

PS: Insgesamt mehr Mut zum orthographischen "z". Matrizen haben nur das eine "t", und Adjazenz ist ein "s"-freies Phänomen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de