www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - einfacher Induktionsbeweis
einfacher Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einfacher Induktionsbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:25 Fr 27.04.2012
Autor: Infoandi

Aufgabe
Beweisen Sie mit vollständiger Induktion:
[mm] \summe_{k=0}^{n}(-1)^{k}*\vektor{n\\k} [/mm] = 0




Die Aufgabe sollte eigentlich sehr simple sein.
Induktionsanfang: n=1
[mm] \summe_{k=0}^{1}(-1)^{k}*\vektor{n\\k} =(-1)^{0}*\vektor{1\\0}+(-1)^{1}*\vektor{1\\1}= [/mm] 0
Induktionsverankerung:
[mm] \summe_{k=0}^{n}(-1)^{k}*\vektor{n\\k} [/mm] = 0
Induktionsschritt: n [mm] \mapsto [/mm] n+1

so nu brauch ich den nötigen "ahhhh" Effekt.
Eigentlich dachte ich mir das wie folgt:

[mm] \summe_{k=0}^{n}(-1)^{k}*\vektor{n\\k}+(-1)^{n+1}*\vektor{n+1\\n+1} [/mm]

oder reicht es etwa schon wenn ich : n = 1
[mm] \summe_{k=0}^{n+1}(-1)^{k}*\vektor{n+1\\k} [/mm] = [mm] (-1)^{0}*\vektor{1+1\\0}+(-1)^{1}*\vektor{1+1\\1}+(-1)^{2}*\vektor{1+1\\2}= [/mm] 0
mache ?
aber es bringt mich beides nicht wirklich zu meinem gewünschten Ergebnis.
kann mir wer weiterhelfen ?
Grüße Andi

        
Bezug
einfacher Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:19 Fr 27.04.2012
Autor: angela.h.b.


> Beweisen Sie mit vollständiger Induktion:
>  [mm]\summe_{k=0}^{n}(-1)^{k}*\vektor{n\\ k}[/mm] = 0
>  
>
>

Hallo,

> Die Aufgabe sollte eigentlich sehr simple sein.
>  Induktionsanfang: n=1
>  [mm]\summe_{k=0}^{1}(-1)^{k}*\vektor{n\\ k} =(-1)^{0}*\vektor{1\\ 0}+(-1)^{1}*\vektor{1\\ 1}=[/mm]
> 0
>  Induktionsverankerung:
> [mm]\summe_{k=0}^{n}(-1)^{k}*\vektor{n\\ k}[/mm] = 0

gilt für ein [mm] n\in \IN [/mm]

>  Induktionsschritt: n [mm]\mapsto[/mm] n+1
>  
> so nu brauch ich den nötigen "ahhhh" Effekt.

Erstmal sollte hier stehen, was nun gezeigt werden soll, nämlich

[mm] $\summe_{k=0}^{n+1}(-1)^{k}*\vektor{n+1\\k}$ [/mm] =0.

>  Eigentlich dachte ich mir das wie folgt:
>  
> [mm]\summe_{k=0}^{n}(-1)^{k}*\vektor{n\\ k}+(-1)^{n+1}*\vektor{n+1\\ n+1}[/mm]


Was meinst Du damit? ich seh' keine Gleichung...
Es ist sicher [mm] $\summe_{k=0}^{n+1}(-1)^{k}*\vektor{n+1\\k}$\green{\not=}$\summe_{k=0}^{n}(-1)^{k}*\vektor{n\\k}+(-1)^{n+1}*\vektor{n+1\\n+1}$, [/mm] von daher kann das nicht klappen.

>  
> oder reicht es etwa schon wenn ich : n = 1
>  [mm]\summe_{k=0}^{n+1}(-1)^{k}*\vektor{n+1\\ k}[/mm] =
> [mm](-1)^{0}*\vektor{1+1\\ 0}+(-1)^{1}*\vektor{1+1\\ 1}+(-1)^{2}*\vektor{1+1\\ 2}=[/mm]  0
> mache ?

Nein, natürlich nicht! Du willst doch zeigen, daß es für beliebiges n gilt .


> aber es bringt mich beides nicht wirklich zu meinem
> gewünschten Ergebnis.
>  kann mir wer weiterhelfen ?

Ich hab's jetzt nicht gerechnet, aber ich würde mal versuchen, mich ausgehend von [mm] $\summe_{k=0}^{n+1}(-1)^{k}*\vektor{n+1\\k}$ [/mm] mit dem Additionstheorem für Binomialkoeffizienten weiterzuhangeln und in diesem Zuge irgendwie daraufhinarbeiten, daß der Ausdruck [mm] $\summe_{k=0}^{n}(-1)^{k}*\vektor{n\\k}$ [/mm]  im Laufe der Rechnung auftaucht.

LG Angela


>  Grüße Andi


Bezug
        
Bezug
einfacher Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:35 Fr 27.04.2012
Autor: Marcel

Hallo,

> Beweisen Sie mit vollständiger Induktion:
>  [mm]\summe_{k=0}^{n}(-1)^{k}*\vektor{n\\k}[/mm] = 0
>  
>
>
> Die Aufgabe sollte eigentlich sehr simple sein.
>  Induktionsanfang: n=1
>  [mm]\summe_{k=0}^{1}(-1)^{k}*\vektor{n\\k} =(-1)^{0}*\vektor{1\\0}+(-1)^{1}*\vektor{1\\1}=[/mm]
> 0
>  Induktionsverankerung:
> [mm]\summe_{k=0}^{n}(-1)^{k}*\vektor{n\\k}[/mm] = 0
>  Induktionsschritt: n [mm]\mapsto[/mm] n+1
>  
> so nu brauch ich den nötigen "ahhhh" Effekt.
>  Eigentlich dachte ich mir das wie folgt:
>  
> [mm]\summe_{k=0}^{n}(-1)^{k}*\vektor{n\\k}+(-1)^{n+1}*\vektor{n+1\\n+1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



wie Angela schon schrieb wolltest Du da sicher eine Gleichheit stehen haben. Es gilt zwar natürlich:
$$\sum_{k=0}^{n+1}a_k=(\sum_{k=0}^n a_k)+a_{n+1}\,,$$
das darfst Du verwenden, aber die $a_k$ linkerhand und rechterhand müssen die gleichen sein:
Du benutzt einmal $a_k=a_k(\red{n+1})=(-1)^k\vektor{\red{n+1}\\k}$ und danach dann $a_k=a_k(\red{n})=(-1)^k\vektor{\red{n}\\k}\,.$
Das geht dann natürlich nicht!

$$\summe_{k=0}^{n+1}(-1)^{k}*\vektor{n+1\\k}=\left(\summe_{k=0}^{\blue{\mathbf{n}}}(-1)^{k}*\vektor{\red{n+1}\\k}\right)+(-1)^{n+1}*\vektor{n+1\\n+1}$$
darfst Du benutzen! (Bei Dir steht rechterhand fälschlicherweise anstatt das $\red{n+1}$ nur $\red{n}$ im Binom.Koeff..)

P.S.
Ohne vollst. Induktion ist die Aufgabe mit der allg. bin. Formel übrigens trivial:
Dazu berechnet man einfach $0^n=(1+(-1))^n\,.$ Aber ihr sollt sicher Induktionsbeweise lernen/üben!

P.P.S.
Tipps:
$$1.)\;\;\;{n\choose k}+{n\choose k+1}={n+1 \choose k+1}$$
und
$$2.)\;\;\;\sum_{\ell=m}^p a_\ell{n+1 \choose \ell} =\sum_{\ell=m\red{\mathbf{-1}}}^{p\red{\mathbf{-1}}}a_{\ell\red{\mathbf{+1}}}} {n+1 \choose \ell\red{\mathbf{+1}}}\,.$$

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de