empirischer Korrelationskoeffi < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hallo!
Ich habe eine Frage zum Korrelationskoeffizienten, da ich grad irgendwie auf dem Schlauch stehe. Erstmal die Definition, wie sie bei mir im Buch steht:
"Gegeben seien die Wertepaare [mm] (x_1, y_1), [/mm] ..., [mm] (x_n, y_n), [/mm] wobei nicht alle [mm] x_i [/mm] gleich sind bzw. nicht alle [mm] y_i [/mm] gleich sind. Die Zahl
[mm] r_{xy} [/mm] = [mm] \bruch{s_{xy}}{s_x s_y}
[/mm]
heißt (empirischer) Korrelationskoeffizient. Dabei ist
[mm] s_{xy} [/mm] = [mm] \bruch{1}{n - 1} \summe_{i=1}^{n} (x_i [/mm] - [mm] \overline{x}) (y_i [/mm] - [mm] \overline{y})
[/mm]
die (empirische) Kovarianz, [mm] \overline{x}, \overline{y} [/mm] sind die arithmetischen Mittelwerte und
[mm] s_x [/mm] = [mm] \wurzel{\bruch{1}{n - 1} \summe_{i=1}^{n} (x_i - \overline{x})^2},
[/mm]
[mm] s_y [/mm] = [mm] \wurzel{\bruch{1}{n - 1} \summe_{i=1}^{n} (y_i - \overline{y})^2}
[/mm]
sind die (empirischen) Standardabweichungen der [mm] x_{i}- [/mm] bzw. [mm] y_{i}-Werte."
[/mm]
Weiter steht dazu:
"Der Korrelationskoeffizient [mm] r_{xy} [/mm] ist so definiert, dass seine Werte immer zwischen -1 und +1 liegen, also
-1 [mm] \le r_{xy} \le [/mm] +1."
Außerdem:
"Die Werte +1 bzw. -1 nimmt [mm] r_{xy} [/mm] an, wenn alle Punkte [mm] (x_1, y_1), [/mm] ..., [mm] (x_n, y_n) [/mm] genau auf einer Geraden liegen, und zwar ist [mm] r_{xy} [/mm] = +1 genau dann, wenn alle Punkte auf einer Geraden mit positiver Steigung liegen und [mm] r_{xy} [/mm] = -1, wenn alle Punkte auf einer Geraden mit negativer Steigung liegen.
Warum? Setzen wir x = [mm] \bruch{1}{\wurzel{n - 1}} \pmat{ x_1 - \overline{x} \\ \vdots \\ x_n - \overline{x}} [/mm] und y = [mm] \bruch{1}{\wurzel{n - 1}} \pmat{ y_1 - \overline{y} \\ \vdots \\ y_n - \overline{y}}, [/mm] so gilt [mm] s_x [/mm] = ||x||, [mm] s_y [/mm] = ||y|| und [mm] s_{xy} [/mm] = <x, y>. Aus der Cauchy-Schwarz-Ungleichung folgt nun [mm] |r_{xy}| \le [/mm] 1, mit Gleichheit genau dann, wenn y = kx, wenn also [mm] y_i [/mm] = k [mm] x_i [/mm] + [mm] (\overline{y} [/mm] - [mm] k\overline{x})."
[/mm]
Bereits als ich das las fragte ich mich: Oha, es gilt also genau dann
[mm] r_{xy} [/mm] = +1,
wenn
y = kx.
Gleichzeitg soll aber gelten, dass
[mm] r_{xy} [/mm] = -1,
wenn alle Punkte [mm] (x_i, y_i) [/mm] auf einer Geraden mit negativer Steigung liegen, wenn also
y = kx
mit beispielsweise
k = -1.
Kommt nur mir das widersprüchlich vor?
Auf den gleichen (vermeintlichen?) Widerspruch stoße ich, wenn ich das Ganze anschreibe.
1) [mm] y_i [/mm] := k [mm] x_i \Rightarrow \overline{y} [/mm] = k [mm] \overline{x}:
[/mm]
1 = [mm] r_{xy} [/mm] = [mm] \bruch{\summe_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\wurzel{\summe_{i=1}^{n} (x_i - \overline{x})^2}\wurzel{\summe_{i=1}^{n} (y_i - \overline{y})^2}} [/mm] = [mm] \ldots [/mm] = [mm] \bruch{k\wurzel{\summe_{i=1}^{n}(x_{i}^2 - 2 x_i \overline{}x + {\overline{x}}^2)}}{k\wurzel{\summe_{i=1}^{n}(x_{i}^2 - 2 x_i \overline{}x + {\overline{x}}^2)}} [/mm] w.A.
2) k := -1:
-1 = [mm] r_{xy} [/mm] = [mm] \bruch{\summe_{i=1}^{n}(x_i - \overline{x})(\overline{x} - x_i)}{\wurzel{\summe_{i=1}^{n}(x_i - \overline{x})^2}\wurzel{\summe_{i=1}^{n}(x_i - \overline{x})^2(\overline{x} - x_i)^2}} [/mm] = [mm] \ldots [/mm] = [mm] \bruch{\summe_{i=1}^{n}(2 \overline{x} x_i - x_{i}^2 - \overline{x}^2)}{\summe_{i=1}^{n}(x_{i}^2 - 2 \overline{x} x_i + \overline{x}^2)} [/mm] w.A.
Um es auf den Punkt zu bringen. Gilt (für ein beliebiges k)
[mm] y_i [/mm] = k [mm] x_i,
[/mm]
dann gilt
[mm] r_{xy} [/mm] = 1.
Gilt aber
k < 0,
dann gilt
[mm] r_{xy} [/mm] = -1 ???
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:38 So 10.11.2019 | Autor: | chrisno |
Tatsächlich hast Du es nicht geschafft, mir einsichtlich zu machen, wo Du einen Widerspruch siehst.
Dass +1 beziehungsweise -1 herauskommt, hast Du offensichtlich nachgerechnet.
Ich vermute, dass das Ergebnis -1 dir nicht gefällt. Ich versuche es auf andere Art zu erklären:
Dass der Vorzeichenwechsel nur aus dem Zähler kommen kann, ist klar, da im Nenner eine Wurzel steht.
Ich schaue nun auf den Zähler: O.B.d.A setze ich an, dass die [mm] $x_i$ [/mm] aufsteigend sortiert sind. Wenn dann die Punkte auf einer fallenden Geraden liegen, dann sind die [mm] $y_i$ [/mm] entsprechend nach fallenden Werten sortiert. Dann sind alle Produkte $ [mm] (x_i [/mm] $ - $ [mm] \overline{x}) (y_i [/mm] $ - $ [mm] \overline{y}) [/mm] $ kleiner oder gleich Null. (Ein bisschen genauer müsste man das noch anschauen, aber mir geht es nur darum, das negative Vorzeichen klar zu machen.)
|
|
|
|
|
Hiho,
dein Problem ist dein unsauberer Aufschrieb.
> Aus
> der Cauchy-Schwarz-Ungleichung folgt nun [mm]|r_{xy}| \le[/mm] 1,
> mit Gleichheit genau dann, wenn y = kx,
Korrekt: Halten wir also fest: Es gilt (Betrag beachten!)
[mm] $|r_{xy}| [/mm] = 1 [mm] \gdw [/mm] y = kx$ für irgendein k.
Hier wird erst mal keine Aussage über das Vorzeichen von k gemacht, aber eben auch nicht über das Vorzeichen von [mm] $r_{xy}$!
[/mm]
Nun gilt dann also:
> [mm]r_{xy}[/mm] = +1,
>
> wenn
>
> y = kx.
Und man kann dann zeigen: Dann folgt $k>0$.
> Gleichzeitg soll aber gelten, dass
Wieso gleichzeitig? Es kann natürlich nur eines von beiden gelten: [mm] $r_{xy} [/mm] = 1$ oder [mm] $r_{xy} [/mm] = -1$
Je nachdem folgt daraus dann eben entweder $k>0$ oder $k<0$.
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 So 10.11.2019 | Autor: | sancho1980 |
> Und man kann dann zeigen: Dann folgt [mm]k>0[/mm].
Ok, mir ist grad aufgefallen, was ich übersehen hatte:
1 = [mm] r_{xy} [/mm] = [mm] \bruch{\summe_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\wurzel{\summe_{i=1}^{n} (x_i - \overline{x})^2}\wurzel{\summe_{i=1}^{n} (y_i - \overline{y})^2}} [/mm] = [mm] \ldots [/mm] = [mm] \bruch{k\wurzel{\summe_{i=1}^{n}(x_{i}^2 - 2 x_i \overline{}x + {\overline{x}}^2)}}{k\wurzel{\summe_{i=1}^{n}(x_{i}^2 - 2 x_i \overline{}x + {\overline{x}}^2)}} [/mm] w.A.
Diese Umstellung war ungenau. Korrekt ist:
1 = [mm] r_{xy} [/mm] = [mm] \bruch{\summe_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\wurzel{\summe_{i=1}^{n} (x_i - \overline{x})^2}\wurzel{\summe_{i=1}^{n} (y_i - \overline{y})^2}} [/mm] = [mm] \ldots [/mm] = [mm] \bruch{k\wurzel{\summe_{i=1}^{n}(x_{i}^2 - 2 x_i \overline{}x + {\overline{x}}^2)}}{\wurzel{k^2}\wurzel{\summe_{i=1}^{n}(x_{i}^2 - 2 x_i \overline{}x + {\overline{x}}^2)}} [/mm] = [mm] \bruch{k}{\wurzel{k^2}} \Rightarrow [/mm] k = [mm] \wurzel{k^2} [/mm] also k >= 0
|
|
|
|