www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - endlich erzeugter UVR
endlich erzeugter UVR < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endlich erzeugter UVR: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:30 Mo 05.07.2004
Autor: studentin

Hallo Leute!
Ich komme bei dieser Aufgabe gar nicht weiter.

Sei U ein endlich erzeugter Untervektorraum des K-Vektorraumes V.
Z.z für f [mm] \in [/mm] Hom (V,W): dim f(U)=dim U-dim (U [mm] \cap [/mm] Kern f).

Morgen müssen wir den Übungszettel schon abgeben und mir fehlen nun so viele Punkte. Wäre schön, wenn jemand mir bei der Aufgabe helfen konnte.
Liebe Grüße und vielen Dank im voraus.

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
endlich erzeugter UVR: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Mo 05.07.2004
Autor: SirJective

Aufgabe: Sei U ein endlich erzeugter Untervektorraum des K-Vektorraumes V.
Z.z für f [mm] \in [/mm] Hom (V,W): dim f(U)=dim U-dim (U [mm] \cap [/mm] Kern f).


Wenn du f einschränkst auf U, dann ist [mm] f|_U \in [/mm] Hom(U,W), Kern [mm] f|_U [/mm] = U [mm] \cap [/mm] Kern f und Bild [mm] f|_U [/mm] = f(U).

Dann kannst du den folgendes Satz anwenden, wobei g = [mm] f|_U [/mm] ist:
dim Bild g + dim Kern g = dim U.

Wenn du diesen Satz in der Vorlesung schon gehabt hast, bist du fertig. Wenn du den nicht hast, dann schreib nochmal.

Gruss,
SirJective

Bezug
                
Bezug
endlich erzeugter UVR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Mo 05.07.2004
Autor: studentin

Wir haben jetzt so versucht zu rechnen:
dim f(U)=dim f/u=dim Bild f/u

Es gilt: dim U = dim Bild f/u + dim Kern f/u
<=> dim Bild f/u = dim U - dim Kern f/u
<=> dim Bild f/u =dim U - dim (U  gesnitten Kern f)
<=>dim f(U)=dim U - dim (U  gesnitten Kern f)

ich hoffe es ist richtig. Kannst du, oder jemand anderer es überprüfen?

Bezug
                        
Bezug
endlich erzeugter UVR: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Mo 05.07.2004
Autor: Gnometech

Das ist soweit richtig, sofern Du mit dem Schrägstrich die Einschränkung von f auf den Unterraum U meinst. :)

Ist natürlich die Frage, ob Deinem Tutor diese Umformung so reicht, oder ob das noch ausführlicher geschehen muß... vielleicht wäre es z.B. hilfreich, noch etwas formaler zu zeigen, dass gilt:

[mm]ker \; f \cap U = ker \; f | _U [/mm]

Gnometech

Bezug
                        
Bezug
endlich erzeugter UVR: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 05.07.2004
Autor: SirJective


> Wir haben jetzt so versucht zu rechnen:
>  dim f(U)=dim f/u=dim Bild f/u

Der mittlere Ausdruck ergibt keinen Sinn. Es ist aber dim f(U) = dim Bild [mm] f|_U, [/mm] weil nach Definition des Bildes gerade Bild [mm] f|_U [/mm] = f(U) ist.

> Es gilt: dim U = dim Bild f/u + dim Kern f/u
> <=> dim Bild f/u = dim U - dim Kern f/u
>  <=> dim Bild f/u =dim U - dim (U  gesnitten Kern f)

>  <=>dim f(U)=dim U - dim (U  gesnitten Kern f)

Diese Umformungen sind korrekt.

Wie gnometech schon schrieb, solltest du noch einen Gedanken darauf verwenden, warum U [mm] \cap [/mm] Kern f = Kern [mm] f|_U [/mm] ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de