endlich erzeugter Vektorraum. < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:16 Mi 28.10.2009 | Autor: | ben.nie |
Aufgabe | Seien V:=C(R) ( Vektorraum stetigen Funktionen f: R->R und K=R. Sein x1,...,xm [mm] \in [/mm] R und U:={f [mm] \in [/mm] C(R)|f(xi)=0 für alle i e {1,...,m}}. Beweisen Sie, dass ein Komplement von U in V existiert, das endlich erzeugt ist. |
Hi,
mein problem bei der Aufgabenstellung ist das mit zwar die Begriffe Komplement,Vektorraum stetiger fkt klar sind aber ich die nich zusammen auf einen Nenner bringen kann.
ich weis das [mm] W\subsetV [/mm] ist und [mm] U\subsetV [/mm] sein muss und das das komplement V in 2 teile bei 0 schneidet gewissermaßen. zudem muss ja gelten |X [mm] \cup [/mm] Y| = |X|+|Y| - |X [mm] \cap [/mm] Y|
demnach muss ich doch zuerst zeigen das, dass komplement existiert und dass dies endlich erzeugt ist oder?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:36 Do 29.10.2009 | Autor: | v0nny |
Mitteilung vom Mod: Ich habe Deine Frage hier angehängt, v0nny, so daß Du sie findest, aber nicht in zwei Threads dasselbe Thema diskutiert wird. Angela
Aufgabe | Seien V:= [mm] \IC [/mm] ( [mm] \IR [/mm] ) (Vektorraum der stetigen Funktionen f: [mm] \IR [/mm] --> [mm] \IR) [/mm] und K= [mm] \IR. [/mm] Seien x1,...,xm [mm] \in \IR [/mm] und U:= {f [mm] \in \IC [/mm] ( [mm] \IR [/mm] ) | [mm] f(x_i)=0 \quad \forall [/mm] i [mm] \in [/mm] {1,....,m}}. Beweisen Sie, dass ein Komplement W von U in V existiert, das endlich erzeugt ist. |
Hallo zusammen,
mit der frage hab ich ein paar Probleme.
Also hier ist ja wahrscheinlich U ein Unterraum von V und ich muss jetzt ein Komplement W finden, dass in U ist und somit auch in V. Aber wie mach ich dann denn am besten? Und was hat das mit dem "endlich erzeugt" auf sich?
Kann mir jemand so ne Starthilfe geben?
Danke
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:28 Fr 30.10.2009 | Autor: | felixf |
Hallo!
> Seien V:=C(R) ( Vektorraum stetigen Funktionen f: R->R und
> K=R. Sein x1,...,xm [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
R und U:={f [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
C(R)|f(xi)=0 für
> alle i e {1,...,m}}. Beweisen Sie, dass ein Komplement von
> U in V existiert, das endlich erzeugt ist.
>
> mein problem bei der Aufgabenstellung ist das mit zwar die
> Begriffe Komplement,Vektorraum stetiger fkt klar sind aber
> ich die nich zusammen auf einen Nenner bringen kann.
> ich weis das [mm]W\subsetV[/mm] ist und [mm]U\subsetV[/mm] sein muss und das
> das komplement V in 2 teile bei 0 schneidet gewissermaßen.
> zudem muss ja gelten |X [mm]\cup[/mm] Y| = |X|+|Y| - |X [mm]\cap[/mm] Y|
Was sind $X$ und $Y$ hier?
Mal zur Aufgabe. Hier sollte $W$ (bis auf 0) moeglichst aus Funktionen bestehen, die an mindestens einem der Punkte [mm] $x_i$ [/mm] nicht 0 sind. Hier bieten sich $m$ Stueck an:
Du kannst Polynome (oder sonstige stetige Funktionen) [mm] $f_i [/mm] : [mm] \IR \to \IR$ [/mm] konstruieren mit [mm] $f_i(x_i) [/mm] = 1$ und [mm] $f_i(x_j) [/mm] = 0$ fuer $j [mm] \neq [/mm] i$. (Z.B. mit Lagrange.)
Sei $W$ der von [mm] $f_1, \dots, f_m$ [/mm] erzeugte Untervektorraum von [mm] $C(\IR)$. [/mm] Ich behaupte nun, dass $U [mm] \oplus [/mm] W = V$ ist.
Zeige zuerst $U [mm] \cap [/mm] W = 0$.
Dann nimm dir ein $f [mm] \in [/mm] V$ und schreibe es als $f = g + [mm] \sum_{i=1}^m \lambda_i f_i$ [/mm] mit $g [mm] \in [/mm] U$ und [mm] $\lambda_1, \dots, \lambda_n \in \IR$. [/mm] (So wie die [mm] $f_i$ [/mm] gewaehlt sind kannst du das sehr einfach machen: es ist ja $g = f - [mm] \sum_{i=1}^m \lambda_i f_i$ [/mm] und [mm] $g(x_j) [/mm] = [mm] f(x_j) [/mm] - [mm] \sum_{i=1}^m \lambda_i f_i(x_j) [/mm] = [mm] f(x_j) [/mm] - [mm] \lambda_j$, [/mm] und dies muss gleich 0 sein.)
LG Felix
|
|
|
|