www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - endliche summen
endliche summen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endliche summen: aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:17 Fr 29.09.2006
Autor: LooZander

Aufgabe
rechne mit endlichen summen:
[mm] \summe_{k=1}^{n} 2^{k} [/mm] - [mm] \summe_{k=1}^{n-2} 2^{k+1} [/mm]

hallo.....hab schon alles versucht, komme aber nicht auf sad richtige ergebnis!!

richtiges ergebnis soll sein: [mm] 2^{n}-1 [/mm]


mein ansatz:
[mm] \summe_{k=1}^{n} 2^{k} [/mm] - [mm] \summe_{k=1}^{n-2} 2^{k+1} [/mm] = [mm] \summe_{k=0}^{n-1} 2^{k+1} [/mm] - [mm] \summe_{k=0}^{n-1} 2^{k} [/mm]
wegen indexverschiebung

jetzt kann ich die geometrische summenformel anwenden: [mm] \summe_{i=0}^{n}a^{i} [/mm] = [mm] \bruch{(1-a^{n})}{(1-a)} [/mm]

also: [mm] \bruch{1-2^{n}}{1-2}-\bruch{1-2^{n-1}}{1-2}=2^{n}-1-\bruch{2^{n}}{2}+1=\bruch{1}{2}2^{n} [/mm]

das ist aber nicht das richtige ergebnis!
könnt ihr mir bite helfen

danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
endliche summen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 15:30 Fr 29.09.2006
Autor: M.Rex

Hallo

> rechne mit endlichen summen:
>  [mm]\summe_{k=1}^{n} 2^{k}[/mm] - [mm]\summe_{k=1}^{n-2} 2^{k+1}[/mm]
>  
> hallo.....hab schon alles versucht, komme aber nicht auf
> sad richtige ergebnis!!
>  
> richtiges ergebnis soll sein: [mm]2^{n}-1[/mm]
>  
>
> mein ansatz:
>  [mm]\summe_{k=1}^{n} 2^{k}[/mm] - [mm]\summe_{k=1}^{n-2} 2^{k+1}[/mm] =
> [mm]\summe_{k=0}^{n-1} 2^{k+1}[/mm] - [mm]\summe_{k=0}^{n-1} 2^{k}[/mm]
>  
> wegen indexverschiebung

Korrekt.

jetzt kannst du die Summen in einer Summe schreiben.

[mm] \summe_{k=0}^{n-1} 2^{k+1} -\summe_{k=0}^{n-1} 2^{k} [/mm]
[mm] =\summe_{k=0}^{n-1} 2^{k+1} [/mm] - [mm] 2^{k} [/mm]

Entweder sieht man jetzt schon, dass alles ausser [mm] 2^{n} [/mm] und -1 "heraussubtrahiert" wird.
Sonst
[mm] \summe_{k=0}^{n-1} 2^{k+1} [/mm] - [mm] 2^{k} [/mm]
[mm] =\red{2^{1}}-\green{2^{0}}+\red{2²}\red{-2^{1}}+2³\red{-2²}+\ldots+\red{2^{n-1}}-2^{n-1-1}+\green{2^{n-1+1}}\red{-2^{n-1}}. [/mm]


Es bleiben jetzt nur noch die grünen Terme [mm] \underbrace{2^{n+1+1}}_{=2^{n}}-\underbrace{2^{0}}_{=1} [/mm] übrig.

Marius

Bezug
                
Bezug
endliche summen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:41 Sa 30.09.2006
Autor: ullim


> Hallo
>  
> > rechne mit endlichen summen:
>  >  [mm]\summe_{k=1}^{n} 2^{k}[/mm] - [mm]\summe_{k=1}^{n-2} 2^{k+1}[/mm]
>  >  
> > hallo.....hab schon alles versucht, komme aber nicht auf
> > sad richtige ergebnis!!
>  >  
> > richtiges ergebnis soll sein: [mm]2^{n}-1[/mm]
>  >  
> >
> > mein ansatz:
>  >  [mm]\summe_{k=1}^{n} 2^{k}[/mm] - [mm]\summe_{k=1}^{n-2} 2^{k+1}[/mm] =
> > [mm]\summe_{k=0}^{n-1} 2^{k+1}[/mm] - [mm]\summe_{k=0}^{n-1} 2^{k}[/mm]
>  >  
> > wegen indexverschiebung
>  
> Korrekt.
>  

Die letzte Summe ist nicht richtig, sondern [mm] \summe_{k=2}^{n-1} 2^{k} [/mm] währe richtig. Daraus sieht man auch sofort, das die ersten beiden Terme der ersten Summe übrigbleiben, also [mm] 2+2^n. [/mm]

> jetzt kannst du die Summen in einer Summe schreiben.
>  
> [mm]\summe_{k=0}^{n-1} 2^{k+1} -\summe_{k=0}^{n-1} 2^{k}[/mm]
>  
> [mm]=\summe_{k=0}^{n-1} 2^{k+1}[/mm] - [mm]2^{k}[/mm]
>  
> Entweder sieht man jetzt schon, dass alles ausser [mm]2^{n}[/mm] und
> -1 "heraussubtrahiert" wird.
>  Sonst
>  [mm]\summe_{k=0}^{n-1} 2^{k+1}[/mm] - [mm]2^{k}[/mm]
>  
> [mm]=\red{2^{1}}-\green{2^{0}}+\red{2²}\red{-2^{1}}+2³\red{-2²}+\ldots+\red{2^{n-1}}-2^{n-1-1}+\green{2^{n-1+1}}\red{-2^{n-1}}.[/mm]
>  
>
> Es bleiben jetzt nur noch die grünen Terme
> [mm]\underbrace{2^{n+1+1}}_{=2^{n}}-\underbrace{2^{0}}_{=1}[/mm]
> übrig.
>  
> Marius

Bezug
        
Bezug
endliche summen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Fr 29.09.2006
Autor: Gonozal_IX

Hiho,

im Endeffekt wurde ja im vorigen Post alles schon erklärt (bis auf die letzte Zeile, die eigentlich [mm] 2^{n+1-1} [/mm] - [mm] 2^0 [/mm] heissen müsste ;)

Nun noch zu deinem Fehler:  Die geometrische Summenformel gilt nur für a<1 und da 2 nicht kleiner 1 ist, kannst du die dann leider nicht anwenden.

Gruß,
Gono.

Bezug
                
Bezug
endliche summen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Fr 29.09.2006
Autor: LooZander

aber wieso kann man die geometrische summe nur für a<1 anwenden??
vor allem steht das nirgendwo!!! es steht immer nur für [mm] a\not=1 [/mm]

Bezug
                        
Bezug
endliche summen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Fr 29.09.2006
Autor: riwe

soweit ich mich erinnern, kann gilt sie auch für a > 1, nur divergiert sie für n [mm] \to\infty [/mm]

Bezug
                        
Bezug
endliche summen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Fr 29.09.2006
Autor: Sigrid

Hallo,

> aber wieso kann man die geometrische summe nur für a<1
> anwenden??
>  vor allem steht das nirgendwo!!! es steht immer nur für
> [mm]a\not=1[/mm]  

Du kannst sie anwenden. Probleme gibt es nur beim Grenzwert.

Nun noch mal zu deiner Rechnung:

> mein ansatz:
> $ [mm] \summe_{k=1}^{n} 2^{k} [/mm] $ - $ [mm] \summe_{k=1}^{n-2} 2^{k+1} [/mm] > $ = $ [mm] \summe_{k=0}^{n-1} 2^{k+1} [/mm] $ - $ [mm] \summe_{k=0}^{n-1} 2^{k} [/mm] $
> wegen indexverschiebung

Kann es sein, dass du bei der Aufgabenstellung einen Tippfehler hast? Diese Indexverschiebung kann ich nicht ganz nachvollziehen.

jetzt kann ich die geometrische summenformel anwenden: $ [mm] \summe_{i=0}^{n}a^{i} [/mm] $ = $ [mm] \bruch{(1-a^{n})}{(1-a)} [/mm] $


Die Formel ist

$ [mm] \summe_{i=0}^{n}a^{i} [/mm] $ = $ [mm] \bruch{(1-a^{n+1})}{(1-a)} [/mm] $



> also: $ [mm] \bruch{1-2^{n}}{1-2}-\bruch{1-2^{n-1}}{1-2}=2^{n}-1-\bruch{2^{n}}{2}+1=\bruch{1}{2}2^{n} [/mm] $

Hier achtest du auch nicht sorgfältig genug auf die Unterschiede zur Formel.

$ [mm] \summe_{k=0}^{n-1} 2^{k+1} [/mm] $ - $ [mm] \summe_{k=0}^{n-1} 2^{k} [/mm] $

$ = 2 [mm] \cdot \bruch{1-2^{n}}{1-2}-\bruch{1-2^{n}}{1-2}= [/mm] 2 [mm] \cdot (2^{n}-1)-2^{n}+1=2^n [/mm] - 1 $

Gruß
Sigrid



Bezug
        
Bezug
endliche summen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Fr 29.09.2006
Autor: ullim

Hi LooZander,

[mm] \sum_{k=1}^{n} 2^k [/mm] - [mm] \sum_{k=1}^{n-2} 2^{k+1}=2+2^n [/mm]

Also entweder ist in Deiner Aufgabenstrellung ein Fehler oder in Deiner Musterlösung.

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de