www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - epsilon delta kr. stetig?
epsilon delta kr. stetig? < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

epsilon delta kr. stetig?: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:14 So 27.04.2008
Autor: torax

Aufgabe
f:[0,1] --> R sei eine beschränkte, aber nicht notwendig stetige Funktion. Zeigen sie mit Hilfe des epsilon-delta Kriteriums, dass die Funktion g:[0,1] --> R mit g(x):=x*f(x) in 0 stetig ist.
(R steht für reele Zahlen)
[Dateianhang nicht öffentlich]

Hallo,
ich bin zwar gerade erst neu angemeldet, aber ich lese hier schon eine ganze Weile in eurem Forum. Es hat mir sehr viel weitergeholfen in den Beiträgen zu stöbern, dafür möchte ich euch an dieser Stelle erstmal danken.
Nun zu meinem Problem: Zu der Aufgabe komme ich nur auf folgenden Ansatz, habe dann allerdings das Problem, dass ich nicht weiß wie ich zeigen kann, dass das gilt:
zu Zeigen:
|g(x)-0| < [mm] \varepsilon [/mm] für alle x [mm] \in [/mm] D |x-0| < [mm] \delta [/mm]
|x*f(x)| < [mm] \varepsilon [/mm] für alle x [mm] \in [/mm] D |x| < [mm] \delta [/mm]

Das Einzige was mir noch einfällt ist, dass das |x*f(x)| beschränkt ist und man das Problem damit vielleicht angehen könnte.
Ich hoffe es hat jemand einen guten Tipp für mich.

Vielen Dank schonmal für die Hilfe und noch einen schönen Tag!

Viele Grüße
torax

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
epsilon delta kr. stetig?: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 So 27.04.2008
Autor: klaras

Hallo,

Das hast du bis hierher alles richtig erkannt.
Aus der Beschränktheit von f(x) kannst du also folgern,
dass es ein c [mm] \in \IR [/mm] gibt, sodass |f(x)| [mm] \le [/mm] c [mm] $\forall [/mm] x [mm] \in [/mm] [0,1]$ (1)
Es ist also zu zeigen, dass es $ [mm] \forall \varepsilon [/mm] >0 $ ein beliebiges $ [mm] \delta [/mm] >0 $ gibt mit:
[mm] $\forall [/mm] x [mm] \in [/mm] D $ und $ [mm] \delta [/mm] >|x| => |f(x)*x| < [mm] \varepsilon [/mm] $
mit(1) folgt also $|f(x)*x| =|f(x)|*|x| [mm] \le [/mm] c*|x| $

Nun setzen wir $ [mm] \delta [/mm] = [mm] \bruch{\varepsilon}{c} [/mm] >0$
Sei nun $ [mm] \epsilon [/mm] >0 $ gegeben und $ [mm] \delta [/mm] $ wie eben definiert.
Dann gilt $ [mm] \forall [/mm] x [mm] \in [/mm] [0,1]$ mit $ [mm] \delta [/mm] > |x| $:

$|f(x)*x| [mm] \le [/mm] c*|x| < [mm] c*\delta [/mm] = [mm] \varepsilon [/mm] $  [mm] \Box [/mm]

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de