www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - erwartungswert
erwartungswert < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erwartungswert: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:15 Sa 04.06.2011
Autor: kioto

das steht im buch:
[mm] E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0} [/mm]

woher kommt  [mm] \bruch{x^2}{2}? [/mm]

        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Sa 04.06.2011
Autor: kamaleonti

Hallo,
> das steht im buch:
>  [mm]E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0}[/mm]
>  
> woher kommt  [mm]\bruch{x^2}{2}?[/mm]  

Wenn du uns nicht verrätst, was f ist, dann können wir nur raten, worum es sich handelt.

Ich kann dir jedoch sagen, dass aus [mm] \integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx} [/mm] folgt, dass  [mm] \integral_{0}^{10}{f(x) dx}=0 [/mm]

LG


Bezug
                
Bezug
erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Sa 04.06.2011
Autor: kioto





> Hallo,
>  > das steht im buch:

>  >  [mm]E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0}[/mm]
>  
> >  

> > woher kommt  [mm]\bruch{x^2}{2}?[/mm]  
> Wenn du uns nicht verrätst, was f ist, dann können wir
> nur raten, worum es sich handelt.
>  

schuldigung.....

f(x) = [mm] \bruch{1}{10} [/mm] für 0 < x < 10

> Ich kann dir jedoch sagen, dass aus [mm]\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}[/mm]
> folgt, dass  [mm]\integral_{0}^{10}{f(x) dx}=0[/mm]
>  
> LG
>  


Bezug
                        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Sa 04.06.2011
Autor: kamaleonti


> > Hallo,
>  >  > das steht im buch:

>  >  >  [mm]E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0}[/mm]
> f(x) = [mm]\bruch{1}{10}[/mm] für 0 < x < 10

Dann gilt aber:

    [mm] \integral_{0}^{10}{\frac{1}{10} dx}=\left[\frac{x}{10}\right]_0^{10}=1 [/mm]

LG

Bezug
                                
Bezug
erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Sa 04.06.2011
Autor: kioto


> > > Hallo,
>  >  >  > das steht im buch:

>  >  >  >  [mm]E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0}[/mm]
>  
> > f(x) = [mm]\bruch{1}{10}[/mm] für 0 < x < 10
>  
> Dann gilt aber:
>
> [mm]\integral_{0}^{10}{\frac{1}{10} dx}=\left[\frac{x}{10}\right]_0^{10}=1[/mm]
>  

heißt es, [mm] \bruch{x^2}{2} [/mm] ist hier falsch?

> LG


Bezug
                                        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Sa 04.06.2011
Autor: schachuzipus

Hallo nochmal,

siehe meine andere Antwort.

Du benutzt eine falsche Formel!

Gruß

schachuzipus


Bezug
                        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Sa 04.06.2011
Autor: schachuzipus

Hallo kioto,

deine Formel ist falsch, richtig lautet sie:

[mm]E(X)=\int\limits_{-\infty}^{\infty}{\red{x}\cdot{}f(x) \ dx}[/mm], wobei [mm]f[/mm] die Dichte von [mm]X[/mm] ist.

Hier ist [mm]f[/mm] nur auf dem Intervall [mm](0,10)[/mm] definiert (bzw. überall sonst [mm] $\equiv [/mm] 0$), daher die Grenzen.

Weiter ist hier also [mm]E(X)=\int\limits_{0}^{10}{x\cdot{}f(x) \ dx}=\int\limits_{0}^{10}{\frac{1}{10}x \ dx}=\frac{1}{10}\cdot{}\int\limits_{0}^{10}{x \ dx}=\frac{1}{10}\cdot{}\left[\frac{x^2}{2}\right]_0^{10}[/mm]

Gruß

schachuzipus


Bezug
                                
Bezug
erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Sa 04.06.2011
Autor: kioto


> Hallo kioto,
>  
> deine Formel ist falsch, richtig lautet sie:
>  
> [mm]E(X)=\int\limits_{-\infty}^{\infty}{\red{x}\cdot{}f(x) \ dx}[/mm],
> wobei [mm]f[/mm] die Dichte von [mm]X[/mm] ist.

danke, das seh ich auch gerade, habs falsch abgetippt

>  
> Hier ist [mm]f[/mm] nur auf dem Intervall [mm](0,10)[/mm] definiert, daher
> die Grenzen.
>  
> Weiter ist hier also [mm]E(X)=\int\limits_{0}^{10}{x\cdot{}f(x) \ dx}=\int\limits_{0}^{10}{\frac{1}{10}x \ dx}=\frac{1}{10}\cdot{}\int\limits_{0}^{10}{x \ dx}=\frac{1}{10}\cdot{}\left[\frac{x^2}{2}\right]_0^{10}[/mm]
>  

aber warum [mm] \bruch{x^2}{2}?? [/mm] woher kommt das?

> Gruß
>  
> schachuzipus
>  


Bezug
                                        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Sa 04.06.2011
Autor: kamaleonti

Hallo kioto,
> aber warum [mm]\bruch{x^2}{2}??[/mm] woher kommt das?

Das ist eine elementare Stammfunktion der Funktion f(x)=x. Das solltest du unbedingt wissen.

LG

Bezug
                                                
Bezug
erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Sa 04.06.2011
Autor: kioto


> Hallo kioto,
>  > aber warum [mm]\bruch{x^2}{2}??[/mm] woher kommt das?

>  
> Das ist eine elementare Stammfunktion der Funktion f(x)=x.
> Das solltest du unbedingt wissen.
>  

ah....... stimmt ja, danke danke, das war ja peinlich von mir....

> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de