www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - euklid. Normalform Transf.
euklid. Normalform Transf. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

euklid. Normalform Transf.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Do 18.09.2014
Autor: RunOrVeith

Aufgabe
Gegeben sei [mm] A=\bruch{1}{4}\pmat{ 3 & \wurzel{6} & 1 \\ -\wurzel{6} & 2 & \wurzel{6} \\ 1 & -\wurzel{6} & 3} \in \IR^{3x3} [/mm]
a) Zeigen sie, dass die Matrix orthogonal ist.
b) Bestimmen sie die euklid. Normalform  von A.
c) Bestimmen sie eine orthogonale Matrix S [mm] \in [/mm] O(3), so dass S^TAS=Â gilt.

Hallo,
ich komme hier bei der Aufgabe c) nicht weiter.
Bei der a) gilt [mm] A*A^T=I_3, [/mm] also ist A orthogonal
bei der b) habe ich den Trick mit [mm] B:=A+A^T [/mm] (char. Poly [mm] =(x-2)*(x-1)^2) [/mm] angewandt und komme auf [mm] Â=\pmat{ 1 & 0 & 0 \\ 0 & 0.5 & - \wurzel{3}*0.5 \\ 0 & \wurzel{3}*0.5 & 0.5}. [/mm]
Bei der c) brauche ich ja eine Orthonormalbasis.
Also nehme ich einen Eigenvektor von [mm] (B-2I_3) [/mm] suche.
z.B [mm] \vektor{1 \\ 0 \\ 1} [/mm] := [mm] w_1 [/mm]
Jetzt muss ich das Gram-Schmidt Verfahren darauf anwenden um am Ende noch alle gefunden Vektoren normalisieren.
Ich dachte eigentlich ich verstehe wie das geht, aber irgendwie doch nicht.
Ich nehme doch dann einen linear unabhängigen Vektor zu [mm] w_1, [/mm] z.b. [mm] \vektor{0 \\ 1 \\ 0}=:w_2 [/mm]
und mache [mm] w_2-\bruch{}{}*w_1 [/mm]
und dann nochmal mit einem weiteren linear unabhängigen Vektor. Nur leider komme ich nicht auf das richtige Ergebnis, was muss ich anders machen?

Vielen Dank!

        
Bezug
euklid. Normalform Transf.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 So 21.09.2014
Autor: MathePower

Hallo RunOrVeith,

> Gegeben sei [mm]A=\bruch{1}{4}\pmat{ 3 & \wurzel{6} & 1 \\ -\wurzel{6} & 2 & \wurzel{6} \\ 1 & -\wurzel{6} & 3} \in \IR^{3x3}[/mm]
>  
> a) Zeigen sie, dass die Matrix orthogonal ist.
>  b) Bestimmen sie die euklid. Normalform  von A.
>  c) Bestimmen sie eine orthogonale Matrix S [mm]\in[/mm] O(3), so
> dass S^TAS=Â gilt.
>  Hallo,
>  ich komme hier bei der Aufgabe c) nicht weiter.
>  Bei der a) gilt [mm]A*A^T=I_3,[/mm] also ist A orthogonal
>  bei der b) habe ich den Trick mit [mm]B:=A+A^T[/mm] (char. Poly
> [mm]=(x-2)*(x-1)^2)[/mm] angewandt und komme auf [mm]Â=\pmat{ 1 & 0 & 0 \\ 0 & 0.5 & - \wurzel{3}*0.5 \\ 0 & \wurzel{3}*0.5 & 0.5}.[/mm]
>  
> Bei der c) brauche ich ja eine Orthonormalbasis.
>  Also nehme ich einen Eigenvektor von [mm](B-2I_3)[/mm] suche.
>  z.B [mm]\vektor{1 \\ 0 \\ 1}[/mm] := [mm]w_1[/mm]
>  Jetzt muss ich das Gram-Schmidt Verfahren darauf anwenden
> um am Ende noch alle gefunden Vektoren normalisieren.
>  Ich dachte eigentlich ich verstehe wie das geht, aber
> irgendwie doch nicht.
>  Ich nehme doch dann einen linear unabhängigen Vektor zu
> [mm]w_1,[/mm] z.b. [mm]\vektor{0 \\ 1 \\ 0}=:w_2[/mm]
>  und mache
> [mm]w_2-\bruch{}{}*w_1[/mm]
>  und dann nochmal mit einem weiteren linear unabhängigen
> Vektor. Nur leider komme ich nicht auf das richtige
> Ergebnis, was muss ich anders machen?
>


Poste dazu Deine bisherigen Rechenschritte
inklusive des gewünschten Ergebnisses.

Im übrigen ist [mm]=0[/mm].


> Vielen Dank!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de