www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - e^x
e^x < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e^x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Sa 06.12.2008
Autor: Englein89

Hallo,

ich habe eine Frage zur [mm] e^x-Funktion. [/mm]

Dies ist doch eine Exponentialfunktion, richtig? Ist exp(x) nur eine andere Schreibweise für [mm] e^x? [/mm] Ich bin da nicht so ganz sicher, weil wir versch. Bezeichnungen benutzen.

Außerdem würd ich gerne wissen ob es richtig ist, dass [mm] e^x [/mm] für alle [mm] \IR [/mm] definiert ist. Wir haben noch Abgrenzungen mit [mm] \IN [/mm] und [mm] \IQ, [/mm] wie zB

"Es ist sinnvoll, exp(x) auch für x Element [mm] \IR [/mm] / [mm] \IQ [/mm] mit [mm] e^x [/mm] zu bezeichnen"

aber ich verstehe dies nicht ganz, was damit gemeint ist.

Danke!

        
Bezug
e^x: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Sa 06.12.2008
Autor: mathmetzsch

Hallochen,
> Hallo,
>  
> ich habe eine Frage zur [mm]e^x-Funktion.[/mm]
>  
> Dies ist doch eine Exponentialfunktion, richtig? Ist exp(x)
> nur eine andere Schreibweise für [mm]e^x?[/mm] Ich bin da nicht so
> ganz sicher, weil wir versch. Bezeichnungen benutzen.

im Endeffekt schon. Mathematisch formal beginnt man mit exp(x), wobei exp(x) durch die Reihe [mm] exp(x)=\summe_{n=0}^{\infty}\bruch{x^{n}}{n!} [/mm]
definiert wird. Diese hat einen unendlichen Konvergenzradius und kann damit als Funktion betrachtet werden, die wir zunächst mal Exponentialfunktion nennen. Man kann dann allerlei Eigenschaften beweisen und kommt dann auch zu dem Schluss, dass [mm] exp(x)=e^{x} [/mm] ist.

>  
> Außerdem würd ich gerne wissen ob es richtig ist, dass [mm]e^x[/mm]
> für alle [mm]\IR[/mm] definiert ist. Wir haben noch Abgrenzungen mit
> [mm]\IN[/mm] und [mm]\IQ,[/mm] wie zB

Ja, exp(x) ist für alle [mm] x\in\IR [/mm] definiert. Du kannst also alle x einsetzen, ohne dass etwas "Verbotenes" passiert!!

>  
> "Es ist sinnvoll, exp(x) auch für x Element [mm]\IR[/mm] / [mm]\IQ[/mm] mit
> [mm]e^x[/mm] zu bezeichnen"

Du meinst hier bestimmt nicht Slash sondern Backslash, also [mm] \IR [/mm] \ [mm] \IQ. [/mm] Damit ist gemeint, dass du dir tatsächlich nur reelle Zahlen ankuckst, die nicht rational sind. Also alle positiven und negativen gemeine Brüche werden rausgenommen. Dieser Zahlenbereich heißt auch irrationale Zahlen, das sind alle unendlichen, nichtperiodischen Dezimalbrüche.

>  
> aber ich verstehe dies nicht ganz, was damit gemeint ist.
>  
> Danke!

Ich hoffe, das hat dir geholfen.
Grüße, Daniel

Bezug
                
Bezug
e^x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 So 07.12.2008
Autor: Englein89

Das hilft mir sehr, danke!

Nur noch eine Frage: Ist die e-FUnktion denn gerade? Ich habe behauptet, sie sei ungerade und drehsymmetrisch zum Ursprung, da f(-x) = - f(x)

Bezug
                        
Bezug
e^x: keine Symmetrie
Status: (Antwort) fertig Status 
Datum: 11:43 So 07.12.2008
Autor: Loddar

Hallo Englein!


Die e-Funktion besitzt keinerlei Symmetrien - also weder punkt- noch achsensymmetrisch.


Und auch $f(-x) \ = \ -f(x)$ gilt für die e-Funktion nicht.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de