www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - exakte DGL
exakte DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exakte DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Fr 20.11.2020
Autor: rubi

Hallo zusammen,

ich habe eine Frage zu exakten DGL.

Folgende DGL liegt vor:
y' - 3xy' = 1-2y  

Wenn ich diese umforme erhalte ich: (1-3x)y' + 2y - 1 = 0
Daraus folgt: (1-3x)dy + (2y-1)dx = 0    (1)

Ableiten von 1- 3x nach x ergibt -3:
Ableiten von 2y - 1 nach y ergibt 2.
Da die Ableitungen nicht übereinstimmen ist die DGL nicht exakt.

Nun folgende Frage:
Wenn ich die Gleichung (1) durch (1-3x) und (2y-1) dividiere erhalte ich
[mm] \bruch{1}{2y-1}*dy+\bruch{1}{1-3x}*dx [/mm] = 0

Wenn ich nun [mm] \bruch{1}{2y-1} [/mm] nach x ableite ergibt sich 0.
Wenn ich [mm] \bruch{1}{1-3x} [/mm] nach y ableite ergibt sich 0.
Somit wäre vom Ergebnis her die DGL exakt, obwohl ich von oben weiß, dass dies nicht der Fall ist.

Warum darf ich die DGL nicht durch (1-3x) bzw. (2y-1) dividieren ?
Wenn ich die DGL löse durch Trennung der Variablen sind solche Divisionen ja auch möglich.

Vielen Dank für Eure Antworten !

Viele Grüße
Rubi


        
Bezug
exakte DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Sa 21.11.2020
Autor: fred97


> Hallo zusammen,
>
> ich habe eine Frage zu exakten DGL.
>
> Folgende DGL liegt vor:
> y' - 3xy' = 1-2y  
>
> Wenn ich diese umforme erhalte ich: (1-3x)y' + 2y - 1 = 0
>  Daraus folgt: (1-3x)dy + (2y-1)dx = 0    (1)
>  
> Ableiten von 1- 3x nach x ergibt -3:
>  Ableiten von 2y - 1 nach y ergibt 2.
>  Da die Ableitungen nicht übereinstimmen ist die DGL nicht
> exakt.
>
> Nun folgende Frage:
> Wenn ich die Gleichung (1) durch (1-3x) und (2y-1)
> dividiere erhalte ich
>  [mm]\bruch{1}{2y-1}*dy+\bruch{1}{1-3x}*dx[/mm] = 0
>  
> Wenn ich nun [mm]\bruch{1}{2y-1}[/mm] nach x ableite ergibt sich 0.
> Wenn ich [mm]\bruch{1}{1-3x}[/mm] nach y ableite ergibt sich 0.
> Somit wäre vom Ergebnis her die DGL exakt, obwohl ich von
> oben weiß, dass dies nicht der Fall ist.
>
> Warum darf ich die DGL nicht durch (1-3x) bzw. (2y-1)
> dividieren ?
> Wenn ich die DGL löse durch Trennung der Variablen sind
> solche Divisionen ja auch möglich.

Ich verstehe Dein Problem nicht.  Du hast doch einen integrierenden Faktor gefunden,  der aus der ursprünglichen nicht exakten Dgl. eine exakte Dgl.  macht.


>
> Vielen Dank für Eure Antworten !
>  
> Viele Grüße
>  Rubi
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de