www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - exakte abbildungen
exakte abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exakte abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Do 22.11.2007
Autor: adrianempen

Aufgabe
Eine Sequenz
[mm] V_{n} \to V_{n-1} \to [/mm] . . . [mm] \to V_{1} \to V_{0} [/mm] , [mm] f_{i} [/mm] : [mm] V_{i} \to V_{i-1} [/mm] , i=1,2,...,n-1,n
von K-Vektorräumen [mm] V_{i} [/mm] und linearen Abbildungen [mm] f_{i} [/mm]  heißt exakt, wenn Ker [mm] f_{i} [/mm] = Im [mm] f_{i+1} [/mm] für i = 1, . . . , n − 1. Zeigen Sie: Ist
0 [mm] \to W_{m} \to W_{m-1} \to [/mm] ... [mm] \to W_{1} \to W_{0} \to [/mm] 0 , [mm] g_{i} [/mm] : [mm] W_{i} \to W_{i-1} [/mm] ,i=1,2,....,m-1,m meine exakte Sequenz endlichdimensionaler K-Vektorräume (0 bezeichnet darinden Nullvektorraum), so gilt:

[mm] \summe_{i=0}^{m} (-1)^{i}*dim W_{i}=0 [/mm]

in der aufgabe stehen die abbildungen immer über den pfeilen, aber das bekomme cih hier nicht hin ... das heißt 0 /to [mm] W_{m} [/mm] und [mm] W_{0} \to [/mm] 0 hat keine abbildungen über den pfeilen .. ich hoffe ihr versteht, wie ich das meine

die summe verkürzt sich ja schön nach dim [mm] W_{i}=dim [/mm] ker [mm] f_{i} [/mm] + dim im [mm] f_{i} [/mm]

dim [mm] W_{0} +(-1)^{m}*dim [/mm] ker [mm] f_{m}=0 [/mm] , und cih nehme mal an, die beiden sumanden sind jeweils null, nur weiß ich nciht so genau, warum ... kann mir da vielelciht jemand einen tip geben?danke

adrian

        
Bezug
exakte abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Do 22.11.2007
Autor: felixf

Hallo Adrian

> Eine Sequenz
>  [mm]V_{n} \to V_{n-1} \to[/mm] . . . [mm]\to V_{1} \to V_{0}[/mm] , [mm]f_{i}[/mm] :
> [mm]V_{i} \to V_{i-1}[/mm] , i=1,2,...,n-1,n
>  von K-Vektorräumen [mm]V_{i}[/mm] und linearen Abbildungen [mm]f_{i}[/mm]  
> heißt exakt, wenn Ker [mm]f_{i}[/mm] = Im [mm]f_{i+1}[/mm] für i = 1, . . . ,
> n − 1. Zeigen Sie: Ist
>  0 [mm]\to W_{m} \to W_{m-1} \to[/mm] ... [mm]\to W_{1} \to W_{0} \to[/mm] 0
> , [mm]g_{i}[/mm] : [mm]W_{i} \to W_{i-1}[/mm] ,i=1,2,....,m-1,m meine exakte
> Sequenz endlichdimensionaler K-Vektorräume (0 bezeichnet
> darinden Nullvektorraum), so gilt:
>  
> [mm]\summe_{i=0}^{m} (-1)^{i}*dim W_{i}=0[/mm]
>  
> in der aufgabe stehen die abbildungen immer über den
> pfeilen, aber das bekomme cih hier nicht hin ... das heißt
> 0 /to [mm]W_{m}[/mm] und [mm]W_{0} \to[/mm] 0 hat keine abbildungen über den
> pfeilen .. ich hoffe ihr versteht, wie ich das meine
>
>  die summe verkürzt sich ja schön nach dim [mm]W_{i}=dim[/mm] ker
> [mm]f_{i}[/mm] + dim im [mm]f_{i}[/mm]

Genau.

> dim [mm]W_{0} +(-1)^{m}*dim[/mm] ker [mm]f_{m}=0[/mm] , und cih nehme mal an,
> die beiden sumanden sind jeweils null, nur weiß ich nciht
> so genau, warum ... kann mir da vielelciht jemand einen tip
> geben?danke

Die Abbildung [mm] $f_m$ [/mm] ist injektiv, da $0 [mm] \to W_m \overset{f_m}{\to} W_{m-1}$ [/mm] exakt ist (was gerade bedeutet, dass das Bild der Nullabbildung $0 [mm] \to W_m$ [/mm] der Kern von [mm] $f_m$ [/mm] ist, womit der Kern von [mm] $f_m$ [/mm] trivial ist).

Allerdings ist [mm] $\dim W_0$ [/mm] im Allgemeinen nicht 0. Du hast dich da wohl irgendwo verrechnet bzw. du hast zuviel/zuwenig weggekuerzt. Ein [mm] $\dim W_0$ [/mm] alleine duerfte auch nicht uebrigbleiben, sondern etwas der Form $ker [mm] f_i$ [/mm] oder $im [mm] f_i$. [/mm] (Ansonsten: wo ist das $Ker [mm] f_1 [/mm] = Im [mm] f_0$ [/mm] geblieben? Dessen Dimension ist naemlich gerade [mm] $\dim W_0$, [/mm] womit die beiden sich aufheben.)

LG Felix


Bezug
                
Bezug
exakte abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 Do 22.11.2007
Autor: adrianempen

ah ja, ok, alles klar, wenn ich eine abbildung von [mm] W_{0} [/mm] nach 0 betrachte, hat die natürlich den kern [mm] W_{0} [/mm] ,also das bild von [mm] f_{1} [/mm] ... und wie du scho nsagtest, ist ,der kern von [mm] f_{m} [/mm] ist trivial ... also ,vielen dank , damit wäre das ganze gelöst. danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de