www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - existiert das Integral?
existiert das Integral? < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

existiert das Integral?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Di 08.01.2008
Autor: ONeill

Aufgabe
Man überprüfe, welches der Nachfolgenden Integrale existiert:
[mm] a.)\integral_{\infty}^{0}{sin(x) dx} [/mm]
[mm] b.)\integral_{\infty}^{1}{\bruch{1}{x^2+ln(x)} dx} [/mm]
c.) [mm] \integral_{1}^{0}{\bruch{sin(x)}{x} dx} [/mm]

Hallo!
Bei den oben genannten Aufgaben habe ich Probleme.
a.) Da sin(x) eine periodische Funktion ist und zwischen +/- 1 alterniert bildet sich kein Grenzwert und somit kann ich das uneigentliche Integral nicht bestimmen, richtig?
b.)Ich weiß nicht wie ich das Integrieren soll...partielle Integration oder Substitution? Habe beides probiert, ohne Ergebnis.
c.)Da ein x im Nenner steht würde ich mal sagen, dass mit steigenden x Werten sich ein Grenzwert bildet und somit das Integral existiert, aber auch hier schaffe ich nicht den Therm zu integrieren.

Kann da jemand weiterhelfen? Viele Dank für die Mühe!
Gruß ONeill

        
Bezug
existiert das Integral?: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 19:00 Di 08.01.2008
Autor: Loddar

Hallo ONeill!


Bei Aufgabe a.) solltest Du das aber auch vielleicht rechnerisch zeigen:
[mm] $$\integral_{\infty}^{0}{\sin(x) \ dx} [/mm] \ = \ [mm] -\integral_{0}^{\infty}{\sin(x) \ dx} [/mm] \ = \ [mm] -\limes_{A\rightarrow\infty}\integral_{0}^{A}{\sin(x) \ dx} [/mm] \ = \ [mm] -\limes_{A\rightarrow\infty}\left[ \ -\cos(x) \ \right]_{0}^{A} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
        
Bezug
existiert das Integral?: Aufgabe b.)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Di 08.01.2008
Autor: Loddar

Hallo ONeill!


Steht da im Nenner tatsächlich ein Pluszeichen oder nicht doch ein Malzeichen?


Gruß
Loddar


Bezug
        
Bezug
existiert das Integral?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Di 08.01.2008
Autor: HJKweseleit

Es ist gar nicht deine Aufgabe, die Integration durchzuführen, sondern nur eine Aussage über die Existenz des Integrals zu treffen.

a) geklärt

>  
> [mm]b.)\integral_{\infty}^{1}{\bruch{1}{x^2+ln(x)} dx}[/mm]

=[mm]-\integral_{1}^{\infty}{\bruch{1}{x^2+ln(x)} dx}[/mm]
Weil [mm] x^2 [/mm] und ln(x) beide positiv sind und damit auch der Integrand, ist

[mm]-F(t)=\integral_{1}^{t}{\bruch{1}{x^2+ln(x)} dx}[/mm] eine in t monoton steigende Funktion. Es ist nur noch zu zeigen, dass es hierfür eine obere Schranke gibt, dann muss [mm] \limes_{t\rightarrow\infty} [/mm] -F(t) und damit das Integral existieren.

Nun ist aber [mm]\integral_{1}^{t}{\bruch{1}{x^2+ln(x)} dx}<\integral_{1}^{t}{\bruch{1}{x^2} dx}=-1/x [/mm]  von 1 bis t = 1-1/t und damit
[mm]\integral_{1}^{\infty}{\bruch{1}{x^2+ln(x)} dx}<1[/mm]

>  c.)
> [mm]\integral_{1}^{0}{\bruch{sin(x)}{x} dx}[/mm]

Der Integrand ist ebenfalls positiv, außerdem existiert der Grenzwert [mm] \limes_{x\rightarrow 0} \bruch{sin(x)}{x}=1. [/mm] Die Integrandenfunktion ist stetig und beschränkt und positiv, daher ist die Integralfunktion wie oben definiert und monoton steigend, aber beschränkt, also existiert sie.


Bezug
                
Bezug
existiert das Integral?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 09.01.2008
Autor: ONeill

Schönen Dank euch beiden für die Hilfe!
Gruß ONeill

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de