www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - exp(matrix)
exp(matrix) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exp(matrix): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 So 18.07.2004
Autor: user_theo

hi,

ich habe folgendes problem:

[mm] exp\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} [/mm]

so weit ich des verstanden hab muss ich [mm] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} [/mm] + [mm] \summe_{k=1}^{unendlich} \bruch{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^k}{k!} [/mm] machen.
Kommt da dann [mm] \begin{pmatrix} 1 & e \\ 0 & 1 \end{pmatrix} [/mm] raus ?

gruss theo

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
exp(matrix): Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 So 18.07.2004
Autor: Marc

Hallo Theo,

[willkommenmr]

> [mm]exp\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} [/mm]
>  
> so weit ich des verstanden hab muss ich [mm]\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}[/mm] +
> [mm]\summe_{k=1}^{unendlich} \bruch{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^k}{k!}[/mm]
> machen.

Ja, du mußt in die Definition der Exponentialreihe [mm] \exp(X)=\summe_{k=0}^{\infty} \bruch{X^k}{k!} [/mm] formal diese Matrix einsetzen.
Also:

[mm] $\exp\left(\pmat{0 & 1 \\0 & 0}\right)=\pmat{0 & 1 \\0 & 0}^0*\bruch{1}{0!}+\pmat{0 & 1 \\0 & 0}^1*\bruch{1}{1!}+\pmat{0 & 1 \\0 & 0}^2*\bruch{1}{2!}+\ldots$ [/mm]

Dabei ist [mm] $\pmat{0 & 1 \\0 & 0}^0:=\pmat{1 & 0 \\0 & 1}$ [/mm] und [mm] $\pmat{0 & 1 \\0 & 0}^1=\pmat{0 & 1 \\0 & 0}$ [/mm]

Jetzt rechne doch mal aus, was [mm] $\pmat{0 & 1 \\0 & 0}^2$ [/mm] ist, und was dann wohl [mm] $\pmat{0 & 1 \\0 & 0}^3$, $\pmat{0 & 1 \\0 & 0}^4$, $\ldots$ [/mm] ist; dann siehst du,...

>  Kommt da dann [mm]\begin{pmatrix} 1 & e \\ 0 & 1 \end{pmatrix}[/mm] raus ?

... dass dieses Ergebnis nicht richtig ist ;-)

Probier's doch noch mal und melde dich mit Fragen oder dem Ergebnis zur Kontrolle.

Viele Grüße,
Marc

Bezug
                
Bezug
exp(matrix): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mo 19.07.2004
Autor: user_theo

hi

jetzt bekomm ich [mm] \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} [/mm]  raus.

Wenn des stimmt, müsste des auch stimmen :
exp [mm] \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} [/mm]  = [mm] \begin{pmatrix} 2+e & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} [/mm]

Gruss Theo

Bezug
                        
Bezug
exp(matrix): Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mo 19.07.2004
Autor: Marc

Hallo Theo!

> jetzt bekomm ich [mm]\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}[/mm]  raus.

[ok]
  

> Wenn des stimmt, müsste des auch stimmen :
>  exp [mm]\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}[/mm]  
> = [mm]\begin{pmatrix} 2+e & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} [/mm]

Bis auf den linken oberen Eintrag ist das auch richtig. Ich würde da über die 2 nochmal nachdenken...

Viele Grüße,
Marc

Bezug
                                
Bezug
exp(matrix): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Di 20.07.2004
Autor: user_theo

hi

also wirds wohl [mm] \begin{pmatrix} e & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} [/mm] sein, weil links oben immer eine 1 steht wenn man ein paar glieder ausrechnet!

wenn ich jetzt aber so was hab : exp [mm] \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} [/mm] , dann bekomm ich : [mm] \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}^0 [/mm] = einheitsmatrix ; [mm] \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}^1 [/mm] = [mm] \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} [/mm] ; [mm] \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}^2 [/mm] = [mm] \begin{pmatrix} 4 & 4 & 1 \\ 0 & 4 & 4 \\ 0 & 0 & 4 \end{pmatrix} [/mm] und [mm] \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}^3 [/mm] = [mm] \begin{pmatrix} 16 & 32 & 24 \\ 0 & 16 & 32 \\ 0 & 0 & 16 \end{pmatrix}. [/mm]

Was soll ich den damit anfangen ? ich find da kein schema drin ! und wenn ich eins hab dann kommt noch des 1/n! dazu .... und was mach ich dann ?

Gruss Theo

Bezug
                                        
Bezug
exp(matrix): Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Di 20.07.2004
Autor: Stefan

Lieber Theo!

> also wirds wohl [mm]\begin{pmatrix} e & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}[/mm]
> sein, weil links oben immer eine 1 steht wenn man ein paar
> glieder ausrechnet!

[ok]
  

> wenn ich jetzt aber so was hab : exp [mm]\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}[/mm]
> , dann bekomm ich : [mm]\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}^0[/mm]
> = einheitsmatrix ; [mm]\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}^1[/mm]
> = [mm]\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}[/mm]
> ; [mm]\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}^2[/mm]
> = [mm]\begin{pmatrix} 4 & 4 & 1 \\ 0 & 4 & 4 \\ 0 & 0 & 4 \end{pmatrix}[/mm]
> und [mm]\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}^3[/mm]
> = [mm]\begin{pmatrix} 16 & 32 & 24 \\ 0 & 16 & 32 \\ 0 & 0 & 16 \end{pmatrix}. [/mm]
>  
>
> Was soll ich den damit anfangen ? ich find da kein schema
> drin ! und wenn ich eins hab dann kommt noch des 1/n! dazu
> .... und was mach ich dann ?

Spalte die Matrix mal auf:

[mm] $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} [/mm] + [mm] \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ [/mm]

und nutze die Identität

[mm] $\exp(A [/mm] + B) = [mm] \exp(A) \cdot \exp(B)$ [/mm]

aus, die dann gilt, wenn $A$ und $B$ kommutieren, wenn also $AB=BA$ gilt.

Fragen an dich:

1) Warum kommutieren hier die beiden Matrizen?

2) Wie sieht [mm] $\exp(Diagonalmatrix)$ [/mm] aus? (Das Ergebnis kann man direkt hinschreiben.)

3) Zeige, dass die zweite Matrix nilpotent ist und berechne ihr Exponential.

Melde dich mal mit Antworten auf die drei Fragen und einem Lösungsvorschlag. :-) (Oder sage, was unklar ist, dann helfen wir dir.)

Liebe Grüße
Stefan

Bezug
                                                
Bezug
exp(matrix): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Di 20.07.2004
Autor: user_theo

hi

zu 1.: ich hab ja : 2  * [mm] \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} [/mm] * [mm] \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} [/mm] =  [mm] \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} [/mm]  * 2 * [mm] \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} [/mm]

da A/2 = einheitsmatrix => A*B = B*A =2 * B

zu 2.: exp [mm] \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} e^2 & 0 & 0 \\ 0 & e^2 & 0 \\ 0 & 0 & e^2 \end{pmatrix} [/mm]

zu 3.: den [mm] exp\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} [/mm]  hab ich in einer anderen aufgabe berechnet und da kamm ich auf [mm] \begin{pmatrix} 1 & 1 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} [/mm]


jetzt muss ich ja nur noch : [mm] \begin{pmatrix} e^2 & 0 & 0 \\ 0 & e^2 & 0 \\ 0 & 0 & e^2 \end{pmatrix} [/mm]  * [mm] \begin{pmatrix} 1 & 1 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} e^2 & e^2 & (e/2)^2 \\ 0 & e^2 & e^2 \\ 0 & 0 & 0 \end{pmatrix} [/mm]

so weit richitg ?

Gruss Theo

Bezug
                                                        
Bezug
exp(matrix): Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Di 20.07.2004
Autor: Stefan

Lieber Theo!

> zu 1.: ich hab ja : 2  * [mm]\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}[/mm]
> * [mm]\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}[/mm]
> =  [mm]\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}[/mm]
>  * 2 * [mm]\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}[/mm]
>
> da A/2 = einheitsmatrix => A*B = B*A =2 * B

Ja, okay. [ok]
  

> zu 2.: exp [mm]\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}[/mm]
> = [mm]\begin{pmatrix} e^2 & 0 & 0 \\ 0 & e^2 & 0 \\ 0 & 0 & e^2 \end{pmatrix}[/mm]

[ok]

> zu 3.: den [mm]exp\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}[/mm]
>  hab ich in einer anderen aufgabe berechnet und da kamm ich
> auf [mm]\begin{pmatrix} 1 & 1 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}[/mm]

Hier stimmt was nicht. Wie sieht der Eintrag an der Stelle $(3,3)$ aus? ;-)

> jetzt muss ich ja nur noch : [mm]\begin{pmatrix} e^2 & 0 & 0 \\ 0 & e^2 & 0 \\ 0 & 0 & e^2 \end{pmatrix}[/mm]
>  * [mm]\begin{pmatrix} 1 & 1 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}[/mm]
> = [mm]\begin{pmatrix} e^2 & e^2 & (e/2)^2 \\ 0 & e^2 & e^2 \\ 0 & 0 & 0 \end{pmatrix} [/mm]

  
Das Prinzip stimmt, ja. :-) Jetzt nur noch mal neu  rechnen... ;-)

Liebe Grüße
Stefan


Bezug
                                                                
Bezug
exp(matrix): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:53 Di 20.07.2004
Autor: user_theo

hi,

kleiner Leichtsinsfehler von mir ;-)
Natürlich kommt da ne 1 hin ! Den Rest schaff ich auch allein !
Vielen dank für eure Hilfe und dafür dass Ihr mir immer so schnell geantwortet habt.

Gruss Theo

Bezug
                                                                        
Bezug
exp(matrix): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:59 Mi 21.07.2004
Autor: Marc

Hallo Theo,

> kleiner Leichtsinsfehler von mir ;-)
>  Natürlich kommt da ne 1 hin ! Den Rest schaff ich auch
> allein !

Schön, bei Problemen melde dich einfach wieder.

>  Vielen dank für eure Hilfe und dafür dass Ihr mir immer so
> schnell geantwortet habt.

Gern geschehen ;-)

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de