www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - expliz.Darstell.Parameterkurve
expliz.Darstell.Parameterkurve < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

expliz.Darstell.Parameterkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Fr 15.08.2008
Autor: tedd

Aufgabe
Skizzieren Sie den Graphen der folgenden Parameterkurve und bestimmen Sie die explizite Darstellung wenn möglich:
[mm] x(t)=sinh^2(t); y(t)=cosh^2(t) t\in\IR [/mm]

[]Der Graph ist eine Gerade mit der Steigung 1 die ihren Urspung in (0/1) hat also müsste ja eine simple Geradengelichung rauskommen, oder kann ich für die explizite Darstellung direkt schreiben:
y=x+1 mit [mm] x\in \IR^+ [/mm] ?

(Woran erkenne ich überhaupt ob eine explizite Darstléllung möglich ist?)

Die Rechnung ist nämlich relativ viel Schreiberei:

habe [mm] x(t)=sinh^2(t) [/mm] nach t aufgelöst:

[mm] \sqrt{x}=sinh(t) [/mm]
[mm] arsinh(\sqrt{x})=t [/mm]

und
[mm] arsinh(\sqrt{x})=ln\left(\sqrt{x}+\sqrt{x+1}\right) [/mm]


dann in [mm] y=cosh^2(t) [/mm] einsetzen:

[mm] y=cosh^2(arsinh(\sqrt{x}))=\left(\bruch{1}{2}*e^{ln\left(\sqrt{x}+\sqrt{x+1}\right)}+\bruch{1}{2}*\bruch{1}{e^{-ln\left(\sqrt{x}+\sqrt{x+1}\right)}}\right)^2 [/mm]

[mm] y=\left(\bruch{\left(\sqrt{x}+\sqrt{x+1}\right)}{2}+\bruch{1}{2*\left(\sqrt{x}+\sqrt{x+1}\right)}\right)^2 [/mm]

Dann habe ich den Hauptnenner gebildet damit ich das alles auf einen Bruch schreiben kann:

[mm] y=\left(\bruch{2*\left(\sqrt{x}+\sqrt{x+1}\right)*\left(\sqrt{x}+\sqrt{x+1}\right)+2}{4*\left(\sqrt{x}+\sqrt{x+1}\right)}\right)^2 [/mm]

[mm] =\left(\bruch{\left(\sqrt{x}+\sqrt{x+1}\right)*\left(\sqrt{x}+\sqrt{x+1}\right)+1}{2*\left(\sqrt{x}+\sqrt{x+1}\right)}\right)^2 [/mm]

[mm] =\left(\bruch{x+\sqrt{x^2+x}+\sqrt{x^2+x}+x+2}{2*\left(\sqrt{x}+\sqrt{x+1}\right)}\right)^2 [/mm]

[mm] =\left(\bruch{2*(x+\sqrt{x^2+x}+1)}{2*\left(\sqrt{x}+\sqrt{x+1}\right)}\right)^2 [/mm]

[mm] =\left(\bruch{x+\sqrt{x^2+x}+1}{\sqrt{x}+\sqrt{x+1}}\right)^2 [/mm]

Jetzt könnte ich noch:

[mm] =\left(\bruch{\sqrt{x}*(\sqrt{x+1}+\sqrt{x})+1}{\sqrt{x+1}+\sqrt{x}}\right)^2 [/mm]

schreiben und dann:

[mm] y=\left(\sqrt{x}+\bruch{1}{\sqrt{x+1}+\sqrt{x}}\right)^2 [/mm]

um dann schließlich zu quadrieren:

[mm] y=x+\bruch{2\sqrt{x}}{\sqrt{x}+\sqrt{x+1}}+\bruch{1}{2*\sqrt{x^2+x}+2*x+1} [/mm]

Das könnte ich das ja wieder auf einen Hauptnenner bringen und evtl so vereinfachen bis dann irgendwann meine Geradengleichung rauskommt.
ALso reicht das mit
y=x+1 mit [mm] x\in \IR^+ [/mm] um sich die Rechnerei hier zu sparen?
Danke und besten Gruß,
tedd [ok]

        
Bezug
expliz.Darstell.Parameterkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Fr 15.08.2008
Autor: Somebody


> Skizzieren Sie den Graphen der folgenden Parameterkurve und
> bestimmen Sie die explizite Darstellung wenn möglich:
>  [mm]x(t)=sinh^2(t); y(t)=cosh^2(t) t\in\IR[/mm]
>  
> []Der Graph
> ist eine Gerade mit der Steigung 1 die ihren Urspung in
> (0/1) hat also müsste ja eine simple Geradengelichung
> rauskommen, oder kann ich für die explizite Darstellung
> direkt schreiben:
>  y=x+1 mit [mm]x\in \IR^+[/mm] ?
>  
> (Woran erkenne ich überhaupt ob eine explizite Darstlellung
> möglich ist?)

Indem Du die Darstellung explizit zu machen versuchst ... und dabei Erfolg hast ;-)

> Die Rechnung ist nämlich relativ viel Schreiberei:

Nein, das geht, unter Verwendung von [mm] $\cosh^2(x)-sinh^2(x)=1$, [/mm] d.h. [mm] $\cosh^2(x)=\sinh^2(x)+1$, [/mm] in einer einzigen Zeile:

[mm]y=\cosh^2(t)=\sinh^2(t)+1=x+1[/mm]



Bezug
                
Bezug
expliz.Darstell.Parameterkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 Fr 15.08.2008
Autor: tedd

Oh arghhh ...

Warum einfach, wenn's auch schwer geht.

[lichtaufgegangen]

Danke Somebody :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de