www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - exponentialgleichungen
exponentialgleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exponentialgleichungen: Tipp, Frage
Status: (Frage) beantwortet Status 
Datum: 22:26 Fr 19.05.2006
Autor: Kathy2212

Aufgabe 1
[mm] 4^x-12 [/mm] mal [mm] 2^x [/mm] +32=0 Lösen durch Substitution

Aufgabe 2
3^(2x+1) - 5^(x+1)=3^(2x )+ [mm] 5^x [/mm] zusammenfassen und lösen

die 1.aufgabe soll ich durch geeignete substitution lösen. Ich hab da u1=8 und u2=4 raus, wenn ich die substitution rückgängig machen will, bekomme ich da x=3 und x=2 raus. Hab ich die Aufgabe dann falsch gelöst???
bei der 2.aufgabe soll ich erst geschickt zusammenfassen und dann lösen. Ich hab die Potenz in Klammern gesetzt. Kann mir jemand einen Tipp geben, wie ich an diese aufgabe herangehen kann oder wie man die lösen kann??? MFG Kathy
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
exponentialgleichungen: Korrektur und Tipp
Status: (Antwort) fertig Status 
Datum: 23:01 Fr 19.05.2006
Autor: zerbinetta

Hallo Kathy,

meinst du bei der ersten Aufgabe [mm](4^x-12)(2^x+32)=0[/mm]?
Dann ist deine Lösung falsch. Setz' doch einfach mal z.B. x=3 ein.
Dann erhältst du auf der linken Seite [mm] (4^3-12)(2^3+32) [/mm] und das ergibt 52*40 und das ist sicher nicht Null...
Was hast du denn eigentlich substituiert? Vielleicht steckt da ja schon der Fehler...

Zu Aufgabe 2:
Sortiere erst mal die Gleichung um und bring Potenzen mit gleicher Basis auf jeweils eine Seite. Die Potenzen mit einer Summe im Exponenten kannst du auch anders schreiben, z.B: [mm] 3^{2x+1}=3^{2x}*3^1=3^x*3^x*3. [/mm]
Anschließend kannst du die Potenzen mit x im Exponenten ausklammern und dann noch einmal die Gleichung umstellen, so dass alle Potenzen mit x im Exponenten (andere gibt es auch nicht mehr) auf einer Seite stehen. Die kannst du dann zusammenfassen, da sie ein Produkt bilden und sich nur in der Basis, aber nicht im Exponenten unterscheiden. Den Rest löst du dann durch Logarithmieren.

O.k., das klang jetzt vielleicht ein bisschen kompliziert, aber so müsste es gehen. Box' dich mal Schritt für Schritt durch und wenn du stecken bleibst, dann mailst du noch mal. (Ich gehe allerdings demnächst offline - gähn - aber hier gibt es sicher noch ein paar unermüdliche Helfer...)

Viele Grüße,
zerbinetta


Bezug
        
Bezug
exponentialgleichungen: Aufgabe 1 richtig!
Status: (Antwort) fertig Status 
Datum: 02:36 Sa 20.05.2006
Autor: Loddar

Hallo Kathy,

[willkommenmr] !!


Ich interpretiere Deine erste Aufgabe als: [mm] $4^x-12*2^x+32 [/mm] \ = \ 0$


Gemäß MBPotenzgesetz gilt: [mm] $4^x [/mm] \ = \ [mm] \left(2^2\right)^x [/mm] \ = \ [mm] 2^{2*x} [/mm] \ = \ [mm] \left(2^x\right)^2$ [/mm]


Wenn Du nun substituierst $u \ := \ [mm] 2^x$ [/mm] , erhältst Du eine quadratische Gleichung, die Du z.B. mit der MBp/q-Formel lösen kannst:

[mm] $u^2-12*u+32 [/mm] \ = \ 0$


Damit hast Du die Aufgabe auch richtig gelöst [ok] !!


Gruß
Loddar


Bezug
                
Bezug
exponentialgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Sa 20.05.2006
Autor: zerbinetta

ooops - peinlich,peinlich...

Danke, Loddar...

;-)
zerbinetta

Bezug
                
Bezug
exponentialgleichungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:43 Sa 20.05.2006
Autor: Kathy2212

Aufgabe
[mm] 4^{x}-12\*2^{x}+32=0 [/mm] lösen durch Substitution

Hallo,
danke für die schnelle Antworten!!!
@Loddar: wenn ich u1=8 und u2=4 herausbekommen habe, ist das also richtig??? Aber wenn ich versuche das durch substitution rückgängig zu machen bekomme ich X=3 und x=2 raus. Dann ist das doch falsch, oder? Ich dachte da muss dann immer x=0 rauskommen, oder etwa nicht???

Danke mfg Kathy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                        
Bezug
exponentialgleichungen: Ist doch alles richtig!
Status: (Antwort) fertig Status 
Datum: 17:53 Sa 20.05.2006
Autor: Loddar

Hallo Kathy!


> wenn ich u1=8 und u2=4 herausbekommen habe, ist
> das also richtig???

[ok]


> Aber wenn ich versuche das durch substitution rückgängig zu
> machen bekomme ich X=3 und x=2 raus. Dann ist das doch falsch, oder?

Das ist völlig richtig so:

[mm] $2^{x_1} [/mm] \ = \ [mm] u_1 [/mm] \ = \ 8 \ = \ [mm] 2^3$ $\gdw$ $x_1 [/mm] \ = \ 3$

[mm] $2^{x_2} [/mm] \ = \ [mm] u_2 [/mm] \ = \ 4 \ = \ [mm] 2^2$ $\gdw$ $x_2 [/mm] \ = \ 2$


> Ich dachte da muss dann immer x=0 rauskommen, oder etwa nicht???

Nein, das ist nicht so! Wie kommst Du darauf?


Gruß
Loddar


Bezug
                                
Bezug
exponentialgleichungen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Sa 20.05.2006
Autor: Kathy2212

Keine Ahnung wie ich da draufgekommen bin?!?! *g*  Wahrscheinlich weil ich vorher bei einer ähnlichen Aufgabe x=0 raus hatte!!! *g* aber ich glaub jetzt hab ich alles verstanden!!! gruß kathy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de