www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - extremalstellen
extremalstellen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremalstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Di 03.05.2005
Autor: doener

gegeben ist folgende funktion:

f(x,y,z) = [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + [mm] z^{2} [/mm]

wie kann ich mathematisch korrekt zeigen, dass diese funktion als extremalstellen nur ein minimum aber kein maximum haben kann?

mein ansatz war folgender: ich dachte analog zur funktion g(x) = [mm] x^{2} [/mm] ist auch f(x) eine parabel, und zwar eine konvexe parabel, da  [mm] \bruch{ \partial^{2} f}{ \partial x^{2} } [/mm] = 2  > 0, [mm] \bruch{ \partial^{2} f }{ \partial y^{2} } [/mm] = 2  > 0, [mm] \bruch{ \partial^{2} f}{ \partial z^{2}} [/mm] = 2  > 0

für funktionen mit nur einer variablen reicht es ja die 2 ableitung auszurechnen und zu schauen, ob sie  >0 oder  <0 ist. geht das auch bei funktionen mit mehreren variablen so wie f(x)?

        
Bezug
extremalstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Di 03.05.2005
Autor: Marcel

Hi doener!

> gegeben ist folgende funktion:
>  
> f(x,y,z) = [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + [mm]z^{2}[/mm]
>  
> wie kann ich mathematisch korrekt zeigen, dass diese
> funktion als extremalstellen nur ein minimum aber kein
> maximum haben kann?
>  
> mein ansatz war folgender: ich dachte analog zur funktion
> g(x) = [mm]x^{2}[/mm] ist auch f(x) eine parabel, und zwar eine
> konvexe parabel, da  [mm]\bruch{ \partial^{2} f}{ \partial x^{2} }[/mm]
> = 2  > 0, [mm]\bruch{ \partial^{2} f }{ \partial y^{2} }[/mm] = 2  >
> 0, [mm]\bruch{ \partial^{2} f}{ \partial z^{2}}[/mm] = 2  > 0
>  
> für funktionen mit nur einer variablen reicht es ja die 2
> ableitung auszurechnen und zu schauen, ob sie  >0 oder  <0
> ist. geht das auch bei funktionen mit mehreren variablen so
> wie f(x)?

Ja, so ähnlich. Die Kandidaten für lokale Extrema kannst du ja mithilfe der Jacobi-Matrix von $f$ berechnen ([]Definition 19.8, S. 187, skriptinterne Zählung, und wegen Satz 19.10 ist das nichts anderes als die Ableitung $Df$), hier wäre:
[m]J_f(x,\,y,\,z)= \pmat{ 2x, & 2y, & 2z}[/m], was wieder nach Definition 19.9 nichts anderes als [mm] $grad\; f(x,\,y,\,z)$ [/mm] ist.

Wegen []Satz 20.17 hat $f$ an [mm] $x^{(0)}=(x^{(0)}_1,\,x^{(0)}_2,\,x^{(0)}_3) \in \IR^3$ [/mm] ein lokales Extremum, falls [mm] $grad\,f(x^{(0)})=(0,\,0,\,0)$, [/mm] und damit kommt nur [mm] $x^{(0)}=(0,\,0,\,0)$ [/mm] als Extremalstelle in Frage. Weiter ist aber hier die Hessematrix ([]Bemerkung 20.16, S. 200)
[mm]H_f(x,\,y,\,z)=\pmat{2&0&0\\0&2&0 \\0&0&2}[/mm]
stets positiv definit, da zum Beispiel die zugehörigen Eigenwerte stets alle $=2$ und damit alle $> 0$ sind (Bemerkung 20.20.2) [mm] $(\star)$. [/mm]
Damit kann an dem Kandidaten [mm] $x^{(0)}=(0,\,0,\,0)$ [/mm] für die Extremstelle wegen Satz 20.21 nur ein lokales Minimum von $f$ vorliegen.

(Eine andere Überlegung zur Minimalstelle:
Ganz elementar kann man sich das auch so überlegen:
Es gilt: [mm] $f(x,y,z)=x^2+y^2+z^2 \ge [/mm] 0$ [mm] $\forall (x,\,y,\,z) \in \IR^3$. [/mm] Jetzt erkennt man sofort, dass $f(x,y,z)=0$ [mm] $\gdw$ $(x,\,y,\,z)=(0,\,0,\,0)$, [/mm] also ist jedenfalls [mm] $x^{(0)}=(0,\,0,\,0)$ [/mm] eine globale (und damit auch lokale) Minimalstelle von $f$.)  

$f$ hat also ein Minimum, aber kein Maximum (hier reicht es, als Begründung anzugeben, dass die Hessematrix [mm] $H_f(x,y,z)$ [/mm] stets positiv definit ist! Hätte nämlich $f$ ein lokales Maximum (beachte, dass ein globales Maximum insbesondere ein lokales Maximum ist!), so müßte es wegen Satz 20.21.4 ein [mm] $y^{(0)}=(y^{(0)}_1,\,y^{(0)}_2,\,y^{(0)}_3) \in \IR^3$ [/mm] geben, so dass [mm] $H_f(y^{(0)})=H_f(y^{(0)}_1,y^{(0)}_2,y^{(0)}_3)$ [/mm] negativ semidefinit wäre, was aber wegen [mm] $(\star)$ [/mm] nicht sein kann).

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de