www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - extremwertprobleme
extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Do 24.08.2006
Autor: Knaubi

Hi leute wer kann mir bei dieser aufgabe bitte helfen?

Aufgabe1:
Die Punkte A(-u/0), B(u/f(u)), C(-u/f(-u)) und D(-u/f(-u)), 0 < u<3, des graphen von f mit [mm] f(x)=-x^2+9 [/mm] bilden ein Rechteck.Für welches u wird der Flächeninhalt(Umfang) des Rechtecks ABCD maximal? Wie froß ist der maximale Inhalt (Umfang)?

ich habe keine vorstellung wie ich hier überhaupt vorgehen soll bitte um hilfe.

  Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Do 24.08.2006
Autor: Stefan-auchLotti

hi,

mit C(-u|f(-u) UND D(-u|f(-u) kann es doch kein Rechteck ergeben, oder?

Die beiden Punkte liegen doch auf demselben Punkt!

Bitte Erklärung :)

Danke,

Stefan

Bezug
        
Bezug
extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Do 24.08.2006
Autor: Knaubi

sorry nochmal mein fehler, Punkt C lautet (u/f(u))
das ist die richtige koordinate des punktes. tut mir leid

bitte um verständnis


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                
Bezug
extremwertprobleme: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Do 24.08.2006
Autor: Herby

Hallo Alex,

da stimmt was nicht, jetzt ist B und C gleich [verwirrt]


lg
Herby

Bezug
                        
Bezug
extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Do 24.08.2006
Autor: Knaubi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

es tut mir sehr leid das ich alle durch einander gebracht habe mit den ganzen verbesserungen.ich gebe die koordinaten jetzt nochmal richtig an für die aufgabe;A(-u/0), B(u/0), C(u/f(u)), D(-u/f(-u))

nochmals es tut mir leid

Bezug
                                
Bezug
extremwertprobleme: Aufgabe?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Do 24.08.2006
Autor: ron

Hallo Knaubi,
kannst du vielleicht nochmal die Aufagbenstellung ergänzen.
Danke
Ron

Bezug
                                
Bezug
extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:15 Do 24.08.2006
Autor: ardik

Hallo Knaubi,

ich habe jetzt mal wieder Deine Frage in die zugehörige Diskussion verschoben.
Wie schon per Privat-Nachricht gesagt: Achte darauf, dass Du Deine Nachfragen, Ergänzungen etc. nicht als neue Diskussion anbringst, sondern innerhalb der bestehenden.
Sonst schaut da keiner durch und Du bekommst keine Antworten...

Schöne Grüße,
ardik

Bezug
        
Bezug
extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 Do 24.08.2006
Autor: Bastiane

Hallo!

> Aufgabe1:
>  Die Punkte A(-u/0), B(u/f(u)), C(-u/f(-u)) und
> D(-u/f(-u)), 0 < u<3, des graphen von f mit [mm]f(x)=-x^2+9[/mm]
> bilden ein Rechteck.Für welches u wird der
> Flächeninhalt(Umfang) des Rechtecks ABCD maximal? Wie froß
> ist der maximale Inhalt (Umfang)?
>  
> ich habe keine vorstellung wie ich hier überhaupt vorgehen
> soll bitte um hilfe.

Zeichne dir doch mal ein Koordinatensystem auf und trage dort an einer beliebigen Stelle den Punkt u und auf der negativen Seite im gleichen Abstand den Punkt -u ein. Dann zeichnest du dir entweder noch genau die Funktion rein oder du denkst dir halt einfach irgendwo die zugehörigen Punkte f(u) und f(-u). Wie würdest du jetzt den Flächeninhalt dieses Rechtecks berechnen? Für ein Rechteck gilt ja: [mm] A_{Rechteck}=a*b. [/mm] Nun, was ist hier a? Wenn wir mit a die Grundseite bezeichnen, ist das hier |u|+|-u|=2u. Und was ist dann b? Naja, das ist dann genau f(u) bzw. f(-u). Und damit ergibt sich die Funktion für den Flächeninhalt in Abhängigkeit von u: A(u)=2u*f(u).

Kommst du nun weiter?

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
extremwertprobleme: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 18:29 Fr 25.08.2006
Autor: Stefan-auchLotti

[mm] f:f(x)=-x^2+9 [/mm] und die Punkte A(-u/0), B(u/0), C(u/f(u)), D(-u/f(-u)).

Formel für den Flächeninhalt: [mm] F_{Rechteck}=a\cdot{}b [/mm]

[mm] a=2\cdot{}u \wedge b=f(u)=-u^2+9 [/mm]

[mm] \Rightarrow F(u)=2u*(-u^2+9)=-2u^3+18u \Rightarrow F'(u)=-6u^2+18 [/mm]

[mm] \Rightarrow F''(u)=-12\cdot{}u [/mm]

Jetzt die Funktion auf Extremstellen untersuchen, da wir ja am MAXimalen Flächeninhalt interessiert sind:

Notwendige Bedingung für rel. Extrema von f in [mm] u_{0} [/mm] ist [mm] F'(u_{0})=0. [/mm]

[mm] F'(u)=0\Rightarrow-6u^2+18=0 [/mm]
            [mm] \gdw u_{1/2}=\pm\wurzel{2} [/mm]

[mm] -\wurzel{2} [/mm] fällt raus, da 0 < u < 3.

Hinreichende Bedingung für rel. Maxima/Minima von f in [mm] u_{0} [/mm] ist [mm] F'(u_{0}=0 \wedge F''(u_{0})\not=0. [/mm]

[mm] F''(\wurzel{2})=-12*\wurzel{2}\not=0 \Rightarrow H(\wurzel{2}|7) [/mm]

Der Flächeninhalt ist also für [mm] u=\wurzel{2} [/mm] maximal.

Viele Grüße,

Stefan.


Bezug
                
Bezug
extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Fr 25.08.2006
Autor: Teufel

Edit: Du meintest sicher [mm] \wurzel{3} [/mm] :)

Bezug
                        
Bezug
extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Fr 25.08.2006
Autor: Stefan-auchLotti

Hi,

Ja, hast Recht, seit neuestem ist 18 : 6 ja 3. :D

Tschüss,

Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de