www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - f- Invariant
f- Invariant < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f- Invariant: Frage
Status: (Frage) beantwortet Status 
Datum: 19:29 Mo 02.05.2005
Autor: wee

Hallo,

Ich stehe vor folgender Aufgabe:

Zeige: Ist f: V [mm] \to [/mm] V linear, W [mm] \subseteq [/mm] V ein f-invarianter Teilraum und g(T) [mm] \in [/mm] K[T] ein beliebiges Polynom, so ist W auch g(f)- invariant

Leider fehlt mir hier trotz langen Überlegungen kein Ansatz. Kann mir also bitte jemand einen Tipp geben

Ich habe diese Frage in keinen anderen Internetforum gestellt

        
Bezug
f- Invariant: Antwort?
Status: (Antwort) fertig Status 
Datum: 20:32 Mo 02.05.2005
Autor: Sanshine

Ich bin mir nicht sicher, ob mein Ansatz richtig ist, aber musst du nicht einfach zeigen, dass f.a. [m]v \in W[/m] gilt: [m](g(f))(v) \in W[/m].
Wenn du jetzt [m]g(f)[/m] als Summe schreibst, also [m] \summe_{i=0}^{n}a_i*f^{i}[/m] und das ganze auf v anwendest, kannst du damit schon mehr anfangen.
Jetzt nutze noch die Linearität von f aus, dann müsstest du es haben.

Bezug
        
Bezug
f- Invariant: auch diese Frage
Status: (Frage) beantwortet Status 
Datum: 19:36 Do 05.05.2005
Autor: Highlander

Hallo,

ich habe dieselbe Aufgabe vor mir liegen und kommen nicht weiter.
Wäre schön, wenn jemand näher erklären könnte, wie man die Aufgabe
lösen könnte.

MfG
Highlander

Bezug
                
Bezug
f- Invariant: Antwort!
Status: (Antwort) fertig Status 
Datum: 20:31 Do 05.05.2005
Autor: Sanshine

Hallo.
Ich versuche es noch einmal - besser? - zu erklären.
g(f) ist eine Funktion von der Form [mm] a_0*f^{0}+a_1*f^{1}+...+a_n*f^{n} [/mm] (nichts anderes sagt die Summe ja aus. Du setzt die Funktion  f in das Polynom ein.)
Wenn du diese neue Funktion (nenne sie meinetwegen h) auf v [mm] \in [/mm] W anwendest, gilt:
[mm] h(v)=a_0*f^{0}(v)+a_1*f(v)+a_2*f^{2}(v)+...+a_n*f^{n}(v). [/mm] Für dieses h(v) musst du zeigen, dass es wieder in W liegt. Dafür betrachtest du die einzelnen Summanden und stellst fest, dass sie alle in W liegen, also auch die Summe von ihnen.
Zur Verdeutlichung: [mm] a_2*f^{2}(v)=a_2*f(f(v)), [/mm] wobei f(v):=v' nach Voraussetzung wieder in W liegt. Was wiederum bedeutet, dass auch f(v') [mm] \in [/mm] W (f-Invarianz).
Das ganze mit einem Körperelement malgenommen liegt natürlich immer noch in W, da W als Teilraum von V ebenfalls ein K-Vektorraum ist.
Hoffe, ich konnte es erklären,
San

Bezug
                        
Bezug
f- Invariant: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Do 05.05.2005
Autor: Highlander

Hi Sanshine!

Danke für die Antwort!
Ich glaube ich habe es kapiert!

MfG

Highlander84

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de