f- Invariant < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:29 Mo 02.05.2005 | Autor: | wee |
Hallo,
Ich stehe vor folgender Aufgabe:
Zeige: Ist f: V [mm] \to [/mm] V linear, W [mm] \subseteq [/mm] V ein f-invarianter Teilraum und g(T) [mm] \in [/mm] K[T] ein beliebiges Polynom, so ist W auch g(f)- invariant
Leider fehlt mir hier trotz langen Überlegungen kein Ansatz. Kann mir also bitte jemand einen Tipp geben
Ich habe diese Frage in keinen anderen Internetforum gestellt
|
|
|
|
Ich bin mir nicht sicher, ob mein Ansatz richtig ist, aber musst du nicht einfach zeigen, dass f.a. [m]v \in W[/m] gilt: [m](g(f))(v) \in W[/m].
Wenn du jetzt [m]g(f)[/m] als Summe schreibst, also [m] \summe_{i=0}^{n}a_i*f^{i}[/m] und das ganze auf v anwendest, kannst du damit schon mehr anfangen.
Jetzt nutze noch die Linearität von f aus, dann müsstest du es haben.
|
|
|
|
|
Hallo,
ich habe dieselbe Aufgabe vor mir liegen und kommen nicht weiter.
Wäre schön, wenn jemand näher erklären könnte, wie man die Aufgabe
lösen könnte.
MfG
Highlander
|
|
|
|
|
Hallo.
Ich versuche es noch einmal - besser? - zu erklären.
g(f) ist eine Funktion von der Form [mm] a_0*f^{0}+a_1*f^{1}+...+a_n*f^{n} [/mm] (nichts anderes sagt die Summe ja aus. Du setzt die Funktion f in das Polynom ein.)
Wenn du diese neue Funktion (nenne sie meinetwegen h) auf v [mm] \in [/mm] W anwendest, gilt:
[mm] h(v)=a_0*f^{0}(v)+a_1*f(v)+a_2*f^{2}(v)+...+a_n*f^{n}(v). [/mm] Für dieses h(v) musst du zeigen, dass es wieder in W liegt. Dafür betrachtest du die einzelnen Summanden und stellst fest, dass sie alle in W liegen, also auch die Summe von ihnen.
Zur Verdeutlichung: [mm] a_2*f^{2}(v)=a_2*f(f(v)), [/mm] wobei f(v):=v' nach Voraussetzung wieder in W liegt. Was wiederum bedeutet, dass auch f(v') [mm] \in [/mm] W (f-Invarianz).
Das ganze mit einem Körperelement malgenommen liegt natürlich immer noch in W, da W als Teilraum von V ebenfalls ein K-Vektorraum ist.
Hoffe, ich konnte es erklären,
San
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:07 Do 05.05.2005 | Autor: | Highlander |
Hi Sanshine!
Danke für die Antwort!
Ich glaube ich habe es kapiert!
MfG
Highlander84
|
|
|
|