www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - f-invarianter Unterraum
f-invarianter Unterraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f-invarianter Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:58 Mo 28.06.2004
Autor: sandramaus

Ich habe diese Frage in keinem weiteren Forum gestellt.

Moin,
könntet ihr mir vielleicht mal nen kleenen Tipp bei der folgenden Aufgabe geben???

Sei f [mm] \in [/mm] End[mm]_\IR [/mm]([mm]\IR^2[/mm]), sodass [mm] A_f_,_X_,_X=[/mm] [mm]\begin{pmatrix}2 & 1 \\0 & 2 \end{pmatrix}[/mm] und X=[mm]\left\{ e_1,e_2 \right\} [/mm]. Sei [mm] W_1 [/mm] ein Unterraum von [mm]\IR^2[/mm] wobei [mm] W_1=[/mm] [mm]\left\langle (1,0) \right\rangle[/mm]. Nun soll ich zeigen, dass [mm] W_2 [/mm] kein f-invarianter Unterraum ist.

Einmal soll ich jetzt zeigen, dass [mm] W_1 [/mm] f-invariant ist.

Und zum anderen ist noch gegeben, dass [mm] W_2 [/mm] Unterraum von [mm]\IR^2[/mm] ist, sodass [mm]\IR^2[/mm][mm] =W_1[/mm] [mm]\oplus[/mm][mm] W_2. [/mm] Nun soll ich zeigen, dass [mm] W_2 [/mm] kein f-invarianter Unterraum ist.

        
Bezug
f-invarianter Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 04:41 Di 29.06.2004
Autor: Marc

Hallo sandramaus,

[willkommenmr]

> Sei f [mm]\in[/mm] End[mm]_\IR [/mm]([mm]\IR^2[/mm]), sodass [mm]A_f_,_X_,_X=[/mm]
> [mm]\begin{pmatrix}2 & 1 \\0 & 2 \end{pmatrix}[/mm] und X=[mm]\left\{ e_1,e_2 \right\} [/mm].
> Sei [mm]W_1[/mm] ein Unterraum von [mm]\IR^2[/mm] wobei [mm]W_1=[/mm] [mm]\left\langle (1,0) \right\rangle[/mm].
> Nun soll ich zeigen, dass [mm]W_2[/mm] kein f-invarianter Unterraum
> ist.

Mir ist nicht ganz klar, wie [mm] W_2 [/mm] definiert ist, das fand ja bis hierher noch keine Erwähnung. Kann es sein, dass die Definition von [mm] W_2 [/mm] unten kommt, und du die Reihenfolge verändert hast? Ansonsten hätte ich die Aufgabe nicht verstanden. Schau doch bitte noch mal in der Aufgabenstellung nach und gebe sie exakt wieder.

> Einmal soll ich jetzt zeigen, dass [mm]W_1[/mm] f-invariant ist.
>  
> Und zum anderen ist noch gegeben, dass [mm]W_2[/mm] Unterraum von
> [mm]\IR^2[/mm] ist, sodass [mm]\IR^2[/mm][mm] =W_1[/mm] [mm]\oplus[/mm][mm] W_2.[/mm] Nun soll ich
> zeigen, dass [mm]W_2[/mm] kein f-invarianter Unterraum ist.

Bis du meine Verwirrung um [mm] W_2 [/mm] auflöst, beschäftige ich mich mal mit [mm] W_1. [/mm]
In deiner anderen Frage hat du ja bereits die Definition von f-invariant zitiert.

Du mußt also zeigen, dass [mm] $f(W_1)\subset W_1$. [/mm]
Das ist aber doch ganz einfach.
Sei [mm] $w_1\in W_1$ [/mm]
[mm] $\Rightarrow w_1=\lambda*\vektor{1\\0}$ [/mm]
[mm] $\Rightarrow f(w_1)=Aw_1=A\lambda*\vektor{1\\0}=\lambda*A\vektor{1\\0}=\lambda\vektor{2\\0}=2\lambda*\vektor{1\\0}\in W_1$ [/mm]

ad [mm] $W_2$) [/mm]

Hier vermute ich einfach mal, dass [mm] W_2 [/mm] gerade so definiert ist, dass [mm] $\IR^2=W_1\oplus W_2$ [/mm]

Nun sollst du zeigen, dass [mm] W_2 [/mm] nicht f-invariant ist.

Dazu wählst du zunächst eine Basis für [mm] $W_1$, [/mm] ich nehme als Basisvektor [mm] $w_1=e_1$, [/mm] bzgl. der Basis X also [mm] $w_1=\vektor{1\\0}$. [/mm]

Jeder Vektor [mm] $w_2$, [/mm] der nicht linear abhängig ist zu [mm] $w_1$ [/mm] würde [mm] W_2 [/mm] mit der gewünschten Eigenschaft [mm] $\IR^2=W_1\oplus W_2$ [/mm] aufspannen, also: [mm] $W_2=\langle w_2\rangle$. [/mm]
Bzgl. der Basis X hat [mm] $w_2$ [/mm] eine Darstellung [mm] $w_2=\lambda_1*e_1+\lambda_2*e_2$ [/mm]

Wegen [mm] $W_1\cap W_2=\{0\}$ [/mm] (das steckt implizit in [mm] "$W_1\oplus W_2$") [/mm] muß [mm] $\lambda_2\not=0$ [/mm] sein.

Ich ab: [mm] $f(w_2)=Aw_2=A(\lambda_1*e_1+\lambda_2*e_2)=\vektor{2*\lambda_1+\lambda_2\\2\lambda_2}$ [/mm]

Jetzt kannst du ja mal überprüfen, ob [mm] $\vektor{2*\lambda_1+\lambda_2\\2\lambda_2}=(2*\lambda_1+\lambda_2)*e_1+2\lambda_2*e_2\in W_2$ [/mm] gilt.

Dazu müßtest es ja ein [mm] $\mu$ [/mm] geben, so dass
[mm] $(2*\lambda_1+\lambda_2)*e_1+2\lambda_2*e_2=\mu*w_2$ [/mm]
[mm] $\gdw\ (2*\lambda_1+\lambda_2)*e_1+2\lambda_2*e_2=\mu*(\lambda_1*e_1+\lambda_2*e_2)$ [/mm]
[mm] $\gdw\ (2*\lambda_1+\lambda_2)*e_1+2\lambda_2*e_2=\mu*\lambda_1*e_1+\mu\lambda_2*e_2)$ [/mm]
[mm] $\gdw\ 2*\lambda_1+\lambda_2=\mu*\lambda_1\ \wedge\ 2\lambda_2=\mu\lambda_2*$ [/mm]

Da [mm] $\lambda_2\not=0$ [/mm] folgt aus der zweiten Gleichung sofort [mm] $\mu=2$ [/mm] und die erste lautet dann:

[mm] $2*\lambda_1+\lambda_2=\mu*\lambda_1$ [/mm]
[mm] $\gdw\ 2*\lambda_1+\lambda_2=2*\lambda_1$ [/mm]
[mm] $\gdw\ \lambda_2=0$ [/mm]

Mmh, das nenne ich einen Widerspruch. Also ist [mm] W_2 [/mm] nicht f-invariant.

Ich würde mir wünschen, dass man das noch irgendwie schneller zeigen kann, aber nicht mehr um diese Zeit ;-)

Viele Grüße,
Marc

Bezug
                
Bezug
f-invarianter Unterraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:03 Di 29.06.2004
Autor: sandramaus

Hallöchen Marc,

danke für deine super schnelle Antwort!

Zum Unterraum [mm] W_2 [/mm] wurde weiter keine Aussage gemacht, aber stimmt ja - wenn [mm]\IR^2[/mm] = [mm] W_1[/mm] [mm]\oplus[/mm][mm] W_2 [/mm] folgt ja daraus, dass [mm] W_1 [/mm] und [mm] W_2 [/mm] nichts gemeinsam haben und [mm] W_1 [/mm] und [mm] W_2 [/mm] sollen ja den [mm]\IR^2[/mm] aufspannen und daraus folgt ja dann, dass [mm] W_2 [/mm] = [mm]\left\langle (0,1) \right\rangle [/mm]
Manchmal sieht man den Wald vor lauter Bäumen nicht, trotzdem herzlichen Dank!

Ganz liebe Grüße - sandramaus

Bezug
                        
Bezug
f-invarianter Unterraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 Do 01.07.2004
Autor: Marc

Hallo sandramaus,

> Zum Unterraum [mm]W_2[/mm] wurde weiter keine Aussage gemacht, aber
> stimmt ja - wenn [mm]\IR^2[/mm] = [mm]W_1[/mm] [mm]\oplus[/mm][mm] W_2[/mm] folgt ja daraus,
> dass [mm]W_1[/mm] und [mm]W_2[/mm] nichts gemeinsam haben und [mm]W_1[/mm] und [mm]W_2[/mm]
> sollen ja den [mm]\IR^2[/mm] aufspannen und daraus folgt ja dann,
> dass [mm]W_2[/mm] = [mm]\left\langle (0,1) \right\rangle[/mm]

Das letzte sehe ich nicht so, [mm] $W_2$ [/mm] muss nicht notwendigerweise von $(0,1)$ aufgespannt werden, dies ist nur eine Möglichkeit von vielen.
Stattdessen ist [mm] $W_2$ [/mm] ein Unterraum, der von einem zu $(1,0)$ linear unabhängigen Vektor aufgespannt wird.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de