www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - f-zyklische K-Vektorräume
f-zyklische K-Vektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f-zyklische K-Vektorräume: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:49 Mo 28.06.2004
Autor: sandramaus

Ich habe diese Frage in keinem weiteren Forum gestellt.

Hallo,

ich sitze grad über einer Aufgabe, die mir ein wenig Kopfzerbrechen bereitet


"Sei V ein endlich-dimensionaler f-zyklischer K-Vektorraum unter einem Endomophismus f: V [mm] \rightarrow [/mm] V. Zeige, dass jeder f-invariante Unterraum U [mm]\subset [/mm] V wiederum zyklisch ist."

In der Vorlesung hatte ich als Def.:
U [mm]\subset [/mm] V sei ein lin. Unterraum und f ist ein [mm] End_k [/mm] (V)
-U ist f- invariant, wenn f(U) [mm]\subset [/mm] U
-U ist f- zyklisch, wenn ein u aus U existiert, sodass u, f(u), [mm] f^2(u)... [/mm] U erzeugen

Im Prinzip entspricht doch die Def. der Aufgabenstellung und wie zeige ich das jetzt nun? *lieb guck*

MFG sandramaus

        
Bezug
f-zyklische K-Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Sa 03.07.2004
Autor: Gnometech

Gruß!

Natürlich gibt es da etwas zu beweisen. Wenn ein Untervektorraum f-invariant ist, dann kann man sich das so vorstellen, dass f eingeschränkt auf U wieder ein Endomorphismus von U ist - das heißt, wenn man U als Vektorraum "im eigenen Recht" betrachtet und mal kurz vergißt, dass er in V liegt, dann macht f darauf trotzdem Sinn, also [mm] f \in End_K(U) [/mm].

Zyklisch wiederum heißt (für V), dass ein Vektor v in V existiert, so dass v, f(v), usw. linear unabhängig sind und zwar bis die volle Dimension erreicht ist. Das Problem ist, dass dieser Vektor v, den man finden kann im Allgemeinen nicht in U enthalten ist - und natürlich kann man nicht jeden beliebigen Vektor nehmen.

Stell Dir z.B. vor, f ist durch folgende Matrix über [mm] \IR [/mm] gegeben:

[mm] f = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} [/mm]

Das heißt, [mm] e_1 [/mm] wird auf [mm] e_2 [/mm] abgebildet und der wiederum auf [mm] e_3 [/mm]. Also ist f zyklisch, wenn man [mm] e_1 [/mm] wählt, aber nicht, wenn man [mm] e_2 [/mm] oder gar [mm] e_3 [/mm] wählt, denn letzterer liegt im Kern.

Langer Vorrede kurzer Sinn: ich wollte Dir ja eigentlich bei der Übungsaufgabe helfen. Also, nimm Dir einen Vektor v her, der die Eigenschaft hat, dass v, f(v), ... V erzeugen. Dann nimmst Du Dir die kleinste Zahl k, so dass der von den ersten k dieser Vektoren erzeugte Untervektorraum mit U einen nicht-trivialen Schnitt hat und nimmst dann ein u ungleich 0 aus diesem Schnitt.

Ich behaupte, dass dieser Vektor für U zyklisch ist, das heißt u, f(u), ... erzeugen U. Dazu überlege Dir zunächst eine Abschätzung für die Dimension von U (wenn V die Dimension n hat und es einen k-1 dimensionalen Untervektorraum in V gibt, der das U nicht trifft, dann...) und schließe dann etwas über die lineare Unabhängigkeit der u, f(u), etc., indem Du u in der Basis des anderen Vektorraumes schreibst. Und sagen wir mal U hat Dimension l und Du hast l linear unabhängige Vektoren gefunden - dann müssen diese von allein U erzeugen.

Ich hoffe, das war halbwegs verständlich. Aber die Aufgabe ist auch nicht ganz so einfach.

Halt Dich wacker!

Gnometech

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de