f Holomorph <-> f komp.diffbar < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie [mm] O(\Omega) [/mm] = Hol [mm] (\Omega). [/mm] |
Hallo zusammen,
ich würde gerne die obige Aussage beweisen und ich würde euch bitten meine Ausführungen zu korrigieren, wenn etwas nicht richtig ist, ich wäre euch sehr dankbar!
[mm] \Omega [/mm] ist bei uns der Buchstabe für ein Gebiet; O [mm] (\Omega) [/mm] die Menge der komplexdiffbaren Funktion und Hol [mm] (\Omega) [/mm] die Menge der holomorphen Funktionen [mm] (\Omega \to \IC).
[/mm]
Also ich muss zeigen f ist genau dann komplex diffenrezierbar wenn f homlomorph ist.
[mm] "\Leftarrow" [/mm] Eine holomorphe Funktion f [mm] \Omega [/mm] to [mm] \IC [/mm] ist in jedem a [mm] \in \IC [/mm] holomorph. f ist in a folomoprh, falls eine in einer Umgebung U von a eine konvergente Potenzreihe existiert p(z)= [mm] \summe_{i=1}^{\infty} a_{n}*(z-a)^{n} [/mm] mit f(z)= [mm] \summe_{i=1}^{\infty} a_{n}*(z-a)^{n} [/mm] für z [mm] \in [/mm] U.
Da Potenzreihen in ihrem Konvergenzbereich beliebig oft [mm] \IC [/mm] diffbar sind, sind holomoprhe Funktionen beliebig oft [mm] \IC [/mm] diffbar. Damit wäre wie Rückrichtung gezeigt.
[mm] "\Rightarrow" [/mm] Sei [mm] z_{0} \in \Omega [/mm] für r>0 mit [mm] \overline{\Delta_{r}} (z_{0}) \subset \Omega (z_0 [/mm] ist in der abgeschlossenen Kreisscheibe in [mm] \Omega)
[/mm]
Nach dem Cauchy-Integralsatz folgt für f [mm] \in O(\Omega) [/mm] f(z) = [mm] \bruch{1}{2*\Pi} \integral_{\Delta_{r}(z_0)}{\bruch{f(\omega)}{\omega-z} d\omega} \forall [/mm] z [mm] \in \Delta_{r}(z_0)
[/mm]
Mit Hilfe der geometrischen Reihe kann ich schreiben:
[mm] \bruch{1}{w-z}=\bruch{1}{w-z_0-(z-z_0)}=\bruch{1}{w-z_0}*\bruch{1}{1-\bruch{z-z_0}{w-z_0}}=\bruch{1}{w-z_0}*\summe_{n=0}^{\infty} \bruch{(z-z_0)^n}{(w-z_0)^n}=\summe_{n=0}^{\infty} \bruch{(z-z_0)^n}{(w-z_0)^{n+1}}
[/mm]
Daraus folgt: [mm] f(z)=\summe_{n=0}^{\infty} (\bruch{1}{2*\Pi} \integral {\bruch{f(\omega)}{(\omega-z_0)^{n+1}} d\omega})*(z-z_0)^n \forall [/mm] z [mm] \in \Delta_{r}(z_0)
[/mm]
Da ich eine Potenzreihe gefunden habe, ist die Hinrichtung bewiesen.
Ist alles argumentativ richtig?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:21 Sa 18.08.2012 | Autor: | Teufel |
Jep, sieht gut aus. Daraus erkennt man auch als Nebenergebnis, dass man die Konvergenzradien bei holomorphen Funktionen immer maximal groß wählen kann.
|
|
|
|