www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - f(ax+by+k) DGL
f(ax+by+k) DGL < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f(ax+by+k) DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 So 28.02.2010
Autor: quade521

Hallo,
kann ich denn die DGL
[mm] y'=\bruch{2}{2y} [/mm]
also y'= 2*(2y)^(-1)
mit der Substitution u= 2y  und u'=2*y' nach y'      u'/2=y' lösen, weil bei mir klappt es nicht ich hab gedacht ich kann es als Sonderfall von f(ax+by+k)=y' betrachten ??

        
Bezug
f(ax+by+k) DGL: Tipp
Status: (Antwort) fertig Status 
Datum: 16:29 So 28.02.2010
Autor: ChrisCI

Warum machst Du nicht einfach "Seperation der Variablen" und integrierst dann auf?

Bezug
                
Bezug
f(ax+by+k) DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 So 28.02.2010
Autor: quade521

hallo,
ja ich weis das wäre einfacher aber ich wollte wissen ob diese substitution hier uahc funktioniert, ich komm schon auf ein ergebnis, dass ist jedoch nicht das richtige...

Bezug
                        
Bezug
f(ax+by+k) DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 So 28.02.2010
Autor: fencheltee


> hallo,
>  ja ich weis das wäre einfacher aber ich wollte wissen ob
> diese substitution hier uahc funktioniert, ich komm schon
> auf ein ergebnis, dass ist jedoch nicht das richtige...

da musst du schon genauer werden oder vorrechnen. beide verfahren (auch wenn substitution hier unnötig ist) liefern dasselbe ergebnis!

gruß tee

Bezug
                                
Bezug
f(ax+by+k) DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 So 28.02.2010
Autor: quade521

also ich komme auf
wennich die sachen aus meiner Frage einsetzte komme ich auf:
[mm] \bruch{u'}{2}=2*u^{-1} [/mm]
Trennung der Varaiblen ergibt
u'*u=4 dann integrieren
[mm] \bruch{u^2}{2}=4x [/mm] +C dann mal 2
[mm] u^2 [/mm] = 8x+C dann wurzel ziehen und resubstituieren führt zu
2*y= [mm] \wurzel[2]{8x+C} [/mm]

Bezug
                                        
Bezug
f(ax+by+k) DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 So 28.02.2010
Autor: MathePower

Hallo quade521,

> also ich komme auf
> wennich die sachen aus meiner Frage einsetzte komme ich
> auf:
>  [mm]\bruch{u'}{2}=2*u^{-1}[/mm]
> Trennung der Varaiblen ergibt
> u'*u=4 dann integrieren
> [mm]\bruch{u^2}{2}=4x[/mm] +C dann mal 2
>  [mm]u^2[/mm] = 8x+C dann wurzel ziehen und resubstituieren führt
> zu
> 2*y= [mm]\wurzel[2]{8x+C}[/mm]  


Stimmt.  [ok]


Gruss
MathePower

Bezug
                                                
Bezug
f(ax+by+k) DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 So 28.02.2010
Autor: quade521

hallo,
ja aber das ist nicht die Lösung die ich mit dem dgl solver von wolfram rausbekomme ichhba auch mal zahlenwerte eingesetzt und das ergebnis stimmt nicht überein
dort kommt heraus
y(x) = -sqrt(2) [mm] sqrt(c_1+x)[/mm]

Bezug
                                                        
Bezug
f(ax+by+k) DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 So 28.02.2010
Autor: MathePower

Hallo quade521,

> hallo,
>  ja aber das ist nicht die Lösung die ich mit dem dgl
> solver von wolfram rausbekomme ichhba auch mal zahlenwerte
> eingesetzt und das ergebnis stimmt nicht überein
>  dort kommt heraus
> y(x) = -sqrt(2) [mm]sqrt(c_1+x)[/mm]  


Wenn Du Deine Lösung etwas umschreibst, dann kommt das
erstmal bis aufs Vorzeichen hin.

Das Vorzeichen "-" gilt ja nur für y < 0.
Aus der Aufgabestellung ist nicht ersichtich,
daß die Lösungen für y < 0 ermittelt werden sollen.


Gruss
MathePower

Bezug
                                                                
Bezug
f(ax+by+k) DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 So 28.02.2010
Autor: quade521

ah okay vielen dank noch eien kurze frage
kann ich einer linearen DGL 1. Ordnung ln(y) auftreten ?

bzw. kann man [mm] 2x+e^x [/mm] *ln(y)+  [mm] \bruch{e^x}{y}*y'=0 [/mm] als eine inhomogene DGL auffassen --> Variation der Konstanten oder ist nur eine Lösun als exacte DGL möglich?

Bezug
                                                                        
Bezug
f(ax+by+k) DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 So 28.02.2010
Autor: MathePower

Hallo quade521,

> ah okay vielen dank noch eien kurze frage
>  kann ich einer linearen DGL 1. Ordnung ln(y) auftreten ?


Nein, die Funktion y selbst und deren Ableitungen können nur linear auftreten.


>  
> bzw. kann man [mm]2x+e^x[/mm] *ln(y)+  [mm]\bruch{e^x}{y}*y'=0[/mm] als eine
> inhomogene DGL auffassen --> Variation der Konstanten oder
> ist nur eine Lösun als exacte DGL möglich?


Mit der Variation der Konstanten wird das etwas aufwendig.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de