www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - f(x,y)=1/x+y integrierbar
f(x,y)=1/x+y integrierbar < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f(x,y)=1/x+y integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Fr 10.10.2008
Autor: kiri111

Aufgabe
Man zeige, dass die Funktion f: [mm] (0,1)^2 \subset \IR^{2} \to \IR, f(x,y):=\bruch{1}{x+y} [/mm] integrierbar ist, und berechne das Integral.

Hallo,
blöde Frage: Aber wie zeige ich die Integrierbarkeit???

Kann jemand mal überprüfen, ob das Integral Null ist?

Viele liebe Grüße kiri

        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Fr 10.10.2008
Autor: Al-Chwarizmi


> Man zeige, dass die Funktion f: [mm](0,1)^2 \subset \IR^{2} \to \IR, f(x,y):=\bruch{1}{x+y}[/mm]
> integrierbar ist, und berechne das Integral.
>  Hallo,
>  blöde Frage: Aber wie zeige ich die Integrierbarkeit???
>  
> Kann jemand mal überprüfen, ob das Integral Null ist?
>  
> Viele liebe Grüße kiri


hallo kiri,

1.) Das einzige Problem könnte im Bereich sehr kleiner x und y
    liegen.

2.) Das Integral ist bestimmt nicht Null, da der Integrand für
    alle erlaubten (x,y)  positiv ist

3.) Um die Integrierbarkeit nachzuweisen, gilt es, die Integration
    wirklich durchzuführen:

          [mm] \integral_{0}^{1}\left(\integral_{0}^{1}\bruch{1}{x+y}\ dx\right)dy\ [/mm] = .......


LG     Al-Chw.

Bezug
                
Bezug
f(x,y)=1/x+y integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Fr 10.10.2008
Autor: kiri111

Hallo,
reicht es denn für die Begrüdung zur Integrierbarkeit deine Argumenation unter 2.)?

Wenn ich das Integral berechne (nach Fubini), muss ich aber immer ln0 ausrechnen!?

Liebe Grüße
kiri

Bezug
                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Fr 10.10.2008
Autor: steppenhahn

Hallo!

Du musst nicht [mm] \ln(0) [/mm] ausrechnen, sondern den Grenzwert, den dein Term für [mm] y\to [/mm] 0 annimmt! Und nur wenn dieser GW existiert (und du ihn berechnen kannst), ist die Funktion "integrierbar".

[mm] \integral_{0}^{1}{\integral_{0}^{1}{\bruch{1}{x+y} dx} dy} [/mm]

= [mm] \integral_{0}^{1}{\left[\ln(x+y)\right]_{x = 0}^{x = 1} dy} [/mm]

= [mm] \integral_{0}^{1}{\ln(1+y) - \ln(y) dy} [/mm]

= [mm] \left[(1+y)*\ln(1+y) - (1+y) - (y*\ln(y) - y)\right]_{y=0}^{y=1} [/mm]

= [mm] \left[(1+y)*\ln(1+y) - 1- y - y*\ln(y) + y\right]_{y=0}^{y=1} [/mm]

= [mm] \left[(1+y)*\ln(1+y) - y*\ln(y) - 1\right]_{y=0}^{y=1} [/mm]

(Die -1 am Ende könnte man auch weglassen)

Und nun siehst du ja, dass du 0 nicht ohne weiteres einsetzen kannst, weil dann dein [mm] y*\ln(y) [/mm] nicht mehr mitspielt. Dann musst du immer auf den Grenzwert ausweichen!
Berechne also

[mm] \underbrace{2*\ln(2) - 1}_{ObereGrenzeEingesetzt} [/mm] -  [mm] \limes_{y\rightarrow 0}\left((1+y)*\ln(1+y) - y*\ln(y) - 1\right) [/mm]

Viel Spaß :-)

Stefan.

Bezug
                                
Bezug
f(x,y)=1/x+y integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Fr 10.10.2008
Autor: kiri111

Ist der besagte Grenzwert -1??

Liebe Grüße
kiri

Bezug
                                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Fr 10.10.2008
Autor: Merle23

Du integrierst doch auf dem Intervall [mm] (0,1)^2, [/mm] wie kann denn da dein Integral jemals negativ werden?
Vielleicht hat sich auch steppenhahn bei seinen Umformungen verrechnet, ich hab es nicht nachgeprüft.

Bezug
                                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Fr 10.10.2008
Autor: Al-Chwarizmi


> Ist der besagte Grenzwert -1??


Mein Ergebnis für das Integral ist  [mm] 2*ln(2)\approx [/mm] 1.3863      

Bezug
                                                
Bezug
f(x,y)=1/x+y integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Sa 11.10.2008
Autor: kiri111

Aber wie weise ich nach, dass der Grenzwert 1 ist?

Viele liebe grüße kiri

Bezug
                                                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Sa 11.10.2008
Autor: Blech

[mm] $\lim_{y\to 0} y\ln(y)=\lim_{y\to 0} \frac{\ln y}{\frac{1}{y}}$ [/mm]

Jetzt l'Hospital.

ciao
Stefan

Bezug
                                                                
Bezug
f(x,y)=1/x+y integrierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Sa 11.10.2008
Autor: kiri111

Ach, wundbar. Vielen Dank!!

kiri

Bezug
                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Fr 10.10.2008
Autor: Al-Chwarizmi


> Hallo,
>  reicht es denn für die Begrüdung zur Integrierbarkeit
> deine Argumenation unter 2.)?
>  
> Wenn ich das Integral berechne (nach Fubini), muss ich aber
> immer ln0 ausrechnen!?
>  
> Liebe Grüße
>  kiri


In meinem Punkt 2.) ging es gar nicht um die Integrierbarkeit
an sich, sondern nur darum, dass der Wert des Integrals (falls
er denn überhaupt existieren sollte) sicher nicht Null sein kann.

Die Integrierbarkeit habe ich unter Punkt 3.) angesprochen, und
da geht es, wie steppenhahn schon erläutert hat, natürlich um
"uneigentliche" Integrale und damit um Grenzwerte.

LG    Al


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de