www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - faktorieller Ring
faktorieller Ring < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

faktorieller Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Di 22.11.2011
Autor: margarita

Aufgabe
Wie laesst sich 5 in [mm] \IZ[\wurzel{11}] [/mm]  faktorisieren?


Fuer 5 habe ich in dem oben genannten Ring zwei Faktorisierungen gefunden, naemlich
5 = (7 + [mm] 2\wurzel{11})(7 [/mm] - [mm] 2\wurzel{11}) [/mm] und
5 = (4 + [mm] \wurzel{11})(4 [/mm] - [mm] \wurzel{11}). [/mm]
Wie kann das sein, da [mm] \IZ[\wurzel{11}] [/mm] doch bekannterweise ein faktorieller Ring ist, dh
Zerlegung in Primfaktoren eindeutig. Wie laesst sich das erklaeren?
Vielen Dank schon im Voraus.

        
Bezug
faktorieller Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Di 22.11.2011
Autor: statler

Mahlzeit!

> Wie laesst sich 5 in [mm]\IZ[\wurzel{11}][/mm]  faktorisieren?
>  
> Fuer 5 habe ich in dem oben genannten Ring zwei
> Faktorisierungen gefunden, naemlich
> 5 = (7 + [mm]2\wurzel{11})(7[/mm] - [mm]2\wurzel{11})[/mm] und
> 5 = (4 + [mm]\wurzel{11})(4[/mm] - [mm]\wurzel{11}).[/mm]
> Wie kann das sein, da [mm]\IZ[\wurzel{11}][/mm] doch bekannterweise
> ein faktorieller Ring ist, dh
> Zerlegung in Primfaktoren eindeutig.

Bis auf Reihenfolge und Einheiten!

> Wie laesst sich das
> erklaeren?

Kannst du die Gl. [mm] \bruch{7+2\wurzel{11}}{4-\wurzel{11}} [/mm] = [mm] 10+3\wurzel{11} [/mm] nachvollziehen? Und fällt dir an ihr was auf? Dann hast du die Antwort.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
faktorieller Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Di 22.11.2011
Autor: margarita

Mahlzeit!

> > Fuer 5 habe ich in dem oben genannten Ring zwei
> > Faktorisierungen gefunden, naemlich
> > 5 = (7 + [mm]2\wurzel{11})(7[/mm] - [mm]2\wurzel{11})[/mm] und
> > 5 = (4 + [mm]\wurzel{11})(4[/mm] - [mm]\wurzel{11}).[/mm]
> > Wie kann das sein, da [mm]\IZ[\wurzel{11}][/mm] doch bekannterweise
> > ein faktorieller Ring ist, dh
> > Zerlegung in Primfaktoren eindeutig.
>
> Bis auf Reihenfolge und Einheiten!
>  
> > Wie laesst sich das
> >

>> Kannst du die Gl.
>>[mm]\bruch{7+2\wurzel{11}}{4-\wurzel{11}}[/mm] =
>> [mm]10+3\wurzel{11}[/mm]
>> nachvollziehen? Und fällt dir an ihr was
>> auf? Dann hast du die Antwort.

Ach sooo !!! :-) D.h. [mm] 7+2\wurzel{11} [/mm] ist gar nicht irreduzibel, sondern kann durch die Gleichung, die du angegeben hast, ausgedrueckt werden!
Damit ist es mir auch verstaendlich...
Super!! Jetzt macht es wieder Sinn. Vielen Dank fuer die rasche Antwort.

>  
> Gruß aus HH-Harburg
>  Dieter
>  

Gruss aus Griechenland, Dafni


Bezug
                        
Bezug
faktorieller Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Di 22.11.2011
Autor: statler


> >> Kannst du die Gl.
> >>[mm]\bruch{7+2\wurzel{11}}{4-\wurzel{11}}[/mm] =
>  >> [mm]10+3\wurzel{11}[/mm]

>  >> nachvollziehen? Und fällt dir an ihr was

> >> auf? Dann hast du die Antwort.
>  
> Ach sooo !!! :-) D.h. [mm]7+2\wurzel{11}[/mm] ist gar nicht
> irreduzibel, sondern kann durch die Gleichung, die du
> angegeben hast, ausgedrueckt werden!
>  Damit ist es mir auch verstaendlich...
>  Super!! Jetzt macht es wieder Sinn. Vielen Dank fuer die
> rasche Antwort.

Naja, eigentlich hätte dir auffallen sollen, daß [mm] 10+3\wurzel{11} [/mm] eine Einheit ist.

> Gruss aus Griechenland, Dafni

Interessant.

Dieter


Bezug
                                
Bezug
faktorieller Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Di 22.11.2011
Autor: margarita


> Naja, eigentlich hätte dir auffallen sollen, daß
> [mm]10+3\wurzel{11}[/mm] eine Einheit ist.

Okay, stimmt denn die Norm [mm] N(10+3\wurzel{11}) [/mm] =1.
Verstanden, danke nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de