www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - fehlerrechnung
fehlerrechnung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

fehlerrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Mi 04.06.2014
Autor: Laura87

Aufgabe
Sie wollen die Funktion [mm] f(x)=\bruch {lnx}{1+x^2} [/mm] an einer ihnen unbekannten stelle [mm] x\in [/mm] [1/3, 2] auswerten. Dazu wollen Sie einen Messwert x' [mm] \in [/mm] [1/3, 2] benutzen. Wie groß sollte der absolute Fehler von x' höchstens sein, damit sie einen gesicherten absoluten Fehler in f (x') von höchsten 0.01 erreichen?

Hallo Zusammen,

ich komme bei dieser Aufgabe an einer Stelle verständnisprobleme und bitte um Hilfe.

Es gilt: [mm] f'(x)=\bruch {1+x^2-2x^2×lnx}{x (1+x^2)^2} [/mm]

Auf [1/3, 2] gilt dann  f'(x) [mm] \le \bruch {1+x^2-2x^2×lnx}{x (1+x^2)^2} \le [/mm]

(Und hier taucht mein problem auf. Ich würde jetzt überall wo ein x ist, die 2 einsetzen, da es ja höchstens heißt. Laut meinem Übungsleiter folgt jedoch...

[mm] \bruch {1+2^2+2*2^2×ln3}{1/3 (1+1/9)^2} [/mm]

warum setze ich bei den ersten beiden x die 2 und danach die 1/3 ein?

Vielen Dank im Voraus


        
Bezug
fehlerrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Mi 04.06.2014
Autor: fred97


> Sie wollen die Funktion [mm]f(x)=\bruch {lnx}{1+x^2}[/mm] an einer
> ihnen unbekannten stelle [mm]x\in[/mm] [1/3, 2] auswerten. Dazu
> wollen Sie einen Messwert x' [mm]\in[/mm] [1/3, 2] benutzen. Wie
> groß sollte der absolute Fehler von x' höchstens sein,
> damit sie einen gesicherten absoluten Fehler in f (x') von
> höchsten 0.01 erreichen?
>  Hallo Zusammen,
>  
> ich komme bei dieser Aufgabe an einer Stelle
> verständnisprobleme und bitte um Hilfe.
>
> Es gilt: [mm]f'(x)=\bruch {1+x^2-2x^2×lnx}{x (1+x^2)^2}[/mm]
>  
> Auf [1/3, 2] gilt dann  f'(x) [mm]\le \bruch {1+x^2-2x^2×lnx}{x (1+x^2)^2} \le[/mm]
>
> (Und hier taucht mein problem auf. Ich würde jetzt
> überall wo ein x ist, die 2 einsetzen, da es ja höchstens
> heißt. Laut meinem Übungsleiter folgt jedoch...
>  
> [mm]\bruch {1+2^2+2*2^2×ln3}{1/3 (1+1/9)^2}[/mm]
>  
> warum setze ich bei den ersten beiden x die 2 und danach
> die 1/3 ein?
>  
> Vielen Dank im Voraus
>  


Betrachten wir zunächst den Zähler  [mm] 1+x^2-2x^2×lnx [/mm]

Für $ [mm] x\in [/mm] $ [1/3, 2]  ist [mm] 1+x^2-2x^2×lnx \le 1+2^2-2x^2lnx [/mm]

Weiter ist lnx [mm] \ge [/mm] ln(1/3)=-ln3, also

    -lnx [mm] \le [/mm] ln3.

Mit [mm] 2x^2 \le 2*2^2 [/mm] folgt daraus: [mm] -2x^2*lnx \le [/mm] 2*2^2ln3

Damit haben wir:  [mm] 1+x^2-2x^2×lnx \le 1+2^2-2x^2lnx \le 1+2^2+2*2^2ln3. [/mm]

Die Abschätzung für den Nenner folgt dem Motto:

      aus  0<b [mm] \le [/mm] a folgt [mm] \bruch{1}{a} \le \bruch{1}{b} [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de