www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - fubini arctan
fubini arctan < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

fubini arctan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Mi 13.11.2013
Autor: Gnocchi

Aufgabe
Sei [mm] B={(x,y)\in \IR^{2}: x > 1,y > 1,(x-1)^{2}+(y-1)^{2}<1} [/mm] und [mm] f(x,y)=arctan(\bruch{y-1}{x-1}). [/mm] Man Skizziere B und bestimme [mm] \integral_{B}^{}{f(x,y) d(x,y)} [/mm]

Guten Abend.
Nach meinen bisherigen Überlegungen, habe ich rausgefunden, dass durch die 3.Bedingung [mm] ((x-1)^{2}+(y-1)^{2}<1) [/mm] ein Kreis um den Punkt (1,1) mit dem Radius 1 dargestellt wird, wobei die äußere Kreisscheibe nicht dazu gehört. Durch die ersten beiden Bedingungen wird dieser Kreis auf den oberen rechten Viertelkreis beschränkt, was der Menge B entspricht.
Nun würde ich gerne Polarkoordinaten anwenden weiß jedoch nicht wie. Die Grenzen wären aufgrund des Viertelkreises für das eine Integral 0 und [mm] \bruch{\pi}{2}. [/mm] Jedoch wüsste ich dann die zweiten Grenzen nicht und bin mir ohnehin unsicher ob und wie ich die Polarkoordinaten anwenden soll.

        
Bezug
fubini arctan: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 Mi 13.11.2013
Autor: Richie1401

Hallo,

> Sei [mm]B={(x,y)\in \IR^{2}: x > 1,y > 1,(x-1)^{2}+(y-1)^{2}<1}[/mm]
> und [mm]f(x,y)=arctan(\bruch{y-1}{x-1}).[/mm] Man Skizziere B und
> bestimme [mm]\integral_{B}^{}{f(x,y) d(x,y)}[/mm]
>  Guten Abend.
>  Nach meinen bisherigen Überlegungen, habe ich
> rausgefunden, dass durch die 3.Bedingung
> [mm]((x-1)^{2}+(y-1)^{2}<1)[/mm] ein Kreis um den Punkt (1,1) mit
> dem Radius 1 dargestellt wird,

Naja, ein Kreis ist es eigentlich nicht wirklich. Besser: Es handelt sich um eine offene Kreisscheibe. Also um eine Kreisscheibe, wo der Rand jedoch gar nicht dazu gehört. Für die Integration spielt das aber keine Rolle.

> wobei die äußere
> Kreisscheibe nicht dazu gehört. Durch die ersten beiden
> Bedingungen wird dieser Kreis auf den oberen rechten
> Viertelkreis beschränkt, was der Menge B entspricht.
>  Nun würde ich gerne Polarkoordinaten anwenden weiß
> jedoch nicht wie. Die Grenzen wären aufgrund des
> Viertelkreises für das eine Integral 0 und [mm]\bruch{\pi}{2}.[/mm]
> Jedoch wüsste ich dann die zweiten Grenzen nicht und bin
> mir ohnehin unsicher ob und wie ich die Polarkoordinaten
> anwenden soll.

Die Idee mit den Polarkoordinaten ist doch gar nicht mal so übel.

Am besten du nimmst gleich:
[mm] x=r\cos\varphi+1 [/mm]
[mm] y=r\sin\varphi+1 [/mm]

Nun setze einfach mal ein. Denk bei der Transformation des Integrals an die Funktionaldeterminante der Polarkoordinaten.


Bezug
                
Bezug
fubini arctan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:25 Do 14.11.2013
Autor: Gnocchi

> Die Idee mit den Polarkoordinaten ist doch gar nicht mal so
> übel.
>  
> Am besten du nimmst gleich:
>  [mm]x=r\cos\varphi+1[/mm]
>  [mm]y=r\sin\varphi+1[/mm]
>  
> Nun setze einfach mal ein. Denk bei der Transformation des
> Integrals an die Funktionaldeterminante der
> Polarkoordinaten.
>  

Okay, ich versuche mich mal...

[mm] \integral_{B}^{}{f(x,y) d(x,y)} [/mm] = [mm] \integral_{B'}^{}{f\circ g *|det J_g(u)|du} [/mm]
wobei [mm] g(r,\varphi)=(rcos(\varphi)+1,r*sin(\varphi)+1) [/mm] ist und die Determinante der Jacobi-Matrix r entspricht?!
Dann ergibt sich mit Fubini:
[mm] \integral_{0}^{\bruch{\pi}{2}}\integral_{0}^{1}{r*arctan\bruch{r*sin(\varphi)}{r*cos(\varphi)}}dr d\varphi [/mm]
Soweit erstmal...
Sind die Grenzen für r von 0 bis 1 richtig oder muss ich von 1 bis 2 nehmen? Bei anderen Fehlern bitte dazwischen hauen. Danke.

Bezug
                        
Bezug
fubini arctan: Antwort
Status: (Antwort) fertig Status 
Datum: 01:23 Do 14.11.2013
Autor: Richie1401

Schauen wir uns mal die Grenzen an:

Es war:
[mm] x=r\cos\varphi+1 [/mm]
[mm] y=r\sin\varphi+1 [/mm]

Für [mm] \varphi=0 [/mm] haben wir: x=r+1 und y=1. Nun gilt für den Radius: 0<r<1. Also gilt für x das folgende: [mm] x\in(1,2). [/mm] Genau das wollen wir ja.

Identisch die Überlegungen für [mm] \varphi=\pi/2. [/mm]

Vereinfache dies:
[mm] \arctan\bruch{r\cdot{}\sin(\varphi)}{r\cdot{}\cos(\varphi)} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de