www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - funktionsfolgen
funktionsfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

funktionsfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 So 13.01.2008
Autor: mini111

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo ihr Lieben!!!
ich habe folgende frage:warum konvergiert diese funktionsfolge gleichmäßig:
[mm] X=[-0,5;0,5]f(index)n(x):=\summe_{k=0}^{n} x^k [/mm]
aber die gleiche nur mit einem anderen definitionsbereich:
X=]-1,1[ konvergiert nicht gleichmäßig.ich erkenne nicht den entscheidenen unterschied.ich hoffe ihr könnt mir helfen,danke schonmal im voraus!
mfg

        
Bezug
funktionsfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 So 13.01.2008
Autor: Somebody


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Hallo ihr Lieben!!!
>  ich habe folgende frage:warum konvergiert diese
> funktionsfolge gleichmäßig:
>  [mm]X=[-0,5;0,5]f(index)n(x):=\summe_{k=0}^{n} x^k[/mm]
>  aber die
> gleiche nur mit einem anderen definitionsbereich:
>  X=]-1,1[ konvergiert nicht gleichmäßig.ich erkenne nicht
> den entscheidenen unterschied.ich hoffe ihr könnt mir
> helfen,danke schonmal im voraus!

Je näher Du mit $x$ gegen den Rand von $]-1,1[$ kommst, desto langsamer konvergiert die geometrische Reihe [mm] $\sum_{k=0}^\infty x^k$. [/mm] Daher kannst Du in diesem Fall zu vorgegebenem [mm] $\varepsilon>0$ [/mm] kein von $x$ unabhängiges [mm] $n_0$ [/mm] finden, derart dass die Abweichung der Partialsummen [mm] $\sum_{k=0}^{n_0}$ [/mm] vom Grenzwert [mm] $\frac{1}{1-x}$ [/mm] kleiner als [mm] $\varepsilon$ [/mm] ist.

Aber Du kannst natürlich für jedes festgehaltene [mm] $x\in]-1;+1[$ [/mm] ein solches [mm] $n_0$ [/mm] finden: dies wäre dann aber nur punktweise (nicht gleichmässige) Konvergenz.

Weshalb kannst Du bei Einschränkung auf $X=[-0.5;+0.5]$ ein [mm] $n_0$ [/mm] unabhängig von [mm] $x\in [/mm] X$ finden? - Weil das Konvergenzverhalten am Rand am schlechtesten ist. Anders herum betrachtet: in diesem Falle ist ja [mm] $|x^k|\leq 0.5^k$. [/mm] Und damit kann man so abschätzen:

[mm]\left|\frac{1}{1-x}-\sum_{k=0}^{n_0} x^k\right|=\left|\sum_{k=n_0}^\infty x^k\right|\leq \sum_{k=n_0}^\infty 0.5^k=\frac{1}{1-0.5}-\frac{1-0.5^{n_0+1}}{1-0.5}[/mm]


Nun muss man einfach [mm] $n_0$ [/mm] so wählen, dass die Ungleichung

[mm]\frac{1}{1-0.5}-\frac{1-0.5^{n_0+1}}{1-0.5} <\varepsilon[/mm]

erfüllt ist: dann hat man sein von [mm] $x\in [/mm] [-0.5;+0.5]$ unabhängiges [mm] $n_0$ [/mm] bestimmt...


Bezug
                
Bezug
funktionsfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 Mo 14.01.2008
Autor: mini111

hallo!!!
danke für deine antwort!!so richtig verstanden habe ich es noch nicht aber es hat mich schon weiter gebracht.was meinst du [mm] mit:\bruch{1}{1-0.5}-\bruch{1-0.5^(n+1)}{1-0.5}<\varepsilon [/mm]
mfg

Bezug
                        
Bezug
funktionsfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Mo 14.01.2008
Autor: Somebody


> hallo!!!
>  danke für deine antwort!!so richtig verstanden habe ich es
> noch nicht aber es hat mich schon weiter gebracht.was
> meinst du mit:
> [mm]\bruch{1}{1-0.5}-\bruch{1-0.5^{n+1}}{1-0.5}<\varepsilon[/mm]
>  mfg

Diese Frage gibt mir Gelegenheit, diese Abschätzung noch auf offensichtliche Weise zu vereinfachen. Es ist ja

[mm]\frac{1}{1-0.5}-\frac{1-0.5^{n+1}}{1-0.5}=\frac{0.5^{n+1}}{1-0.5}=0.5^n[/mm]

Nun zurück zu Deiner Frage: ich kann Deine Frage nach der Bedeutung (dem was ich "damit meine") nur beantworten, indem ich mich der Mühe unterziehe, den Kontext nochmals aufzuwärmen.
Es ist ja so: Du willst gleichmässige Konvergenz der Reihe [mm] $\sum_{k=0}^\infty x^k$ [/mm] auf $X:= [-0.5;+0.5]$ beweisen. Eine solche Reihe nennen wir gleichmässig konvergent gegen deren (für alle $x$ mit $|x|<1$ existierenden) punktweisen Limes $f(x):= [mm] \sum_{k=0}^\infty x^k=\frac{1}{1-x}$, [/mm] wenn die Partialsummenfolge [mm] $f_n(x) [/mm] := [mm] \sum_{k=0}^n x^k$ [/mm] auf $X$ gleichmässig gegen $f(x)$ konvergiert.
Dies bedeuet: für ein beliebig klein vorgegebenes [mm] $\varepsilon>0$ [/mm] müssen wir ein [mm] $n_0$ [/mm] finden können, so dass für alle [mm] $n\geq n_0$ [/mm] der Betrag der Abweichung von der Grenzfunktion [mm] $|f(x)-f_n(x)|$ [/mm] für alle [mm] $x\in [/mm] X$ kleiner als [mm] $\varepsilon$ [/mm] ist.
Die Frage ist nun, wie wir ein solches [mm] $n_0$ [/mm] bestimmen können. Zu diesem Zweck können wir benutzen, dass für alle [mm] $x\in [/mm] X$ gilt, dass [mm] $|x^k|\leq 0.5^k$ [/mm] ist. Deshalb gilt für alle [mm] $n\geq n_0$ [/mm]

[mm]|f(x)-f_n(x)|=\left|\sum_{k=0}^\infty x^k -\sum_{k=0}^n x^k\right|=\left|\sum_{k=n+1}^\infty\right|\leq \sum_{k=n+1}^\infty|x^k|\leq \sum_{k=n_0}^\infty 0.5^k = \frac{1}{1-0.5}-\frac{1-0.5^{n_0+1}}{1-0.5} = 0.5^{n_0}[/mm]

Wobei hier beim Übergang von links nach rechts beim zweitletzten Gleichheitszeichen die bekannte Summenformel für die (unendliche bzw. endliche) geometrische Reihe verwendet wurde.

Das heisst, nach dieser langatmigen Erklärung nun kurzgefasst: [mm] $|f(x)-f_n(x)|\leq 0.5^{n_0}$, [/mm] für alle [mm] $n\geq n_0$. [/mm]
Um zu erzwingen, dass für alle [mm] $n\geq n_0$ [/mm] gilt [mm] $|f(x)-f_n(x)|<\varepsilon$, [/mm] genügt es deshalb, [mm] $n_0$ [/mm] so gross zu wählen, dass die Ungleichung [mm] $0.5^{n_0}<\varepsilon$, [/mm] d.h. [mm] $n_0>\frac{\ln(\varepsilon)}{\ln(0.5)}$ [/mm] gilt.


Bezug
                                
Bezug
funktionsfolgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:11 Di 15.01.2008
Autor: mini111

hallo nochmal!!!
vielen dank für die umfangreiche hilfe!!!ich habe es jetzt,sehr gut verstanden!kein wunder bei einer so guten erklärung!!!
lieben gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de