www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - funktionsfolgen
funktionsfolgen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

funktionsfolgen: funktionsfolgen und integratio
Status: (Frage) beantwortet Status 
Datum: 15:04 Mo 07.09.2009
Autor: Danielt23

Aufgabe
Die Funktion

f(x) = 2(n³)x für x [mm] \in [/mm] [0 , [mm] \bruch{1}{2n}] [/mm]
f(x) = -2(n³)x für x [mm] \in [\bruch{1}{2n}, \bruch{1}{n}] [/mm]

soll auf punktweise Grenzwert untersucht werden. Konvergiert die Funktionenfolge [mm] (fn)n\in\IN [/mm] gleichmässig?

WIe kann ich das gucken, wenn die Funktion aus zwei Funktionen besteht? WWas ist die Lösung und wie komme ich zu dieser?

Danke

        
Bezug
funktionsfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Mo 07.09.2009
Autor: Al-Chwarizmi


> Die Funktion
>  
>  [mm] f_n(x) [/mm] = 2(n³)x für x [mm]\in[/mm] [0 , [mm]\bruch{1}{2n}][/mm]
>  [mm] f_n(x) [/mm] = -2(n³)x für x [mm]\in [\bruch{1}{2n}, \bruch{1}{n}][/mm]

Ich habe hier noch den Index n bei der Funktion angefügt.
Übrigens dürfen bei den Intervallen nicht überall eckige
Klammern stehen, da sich die beiden Definitionen an der
Nahtstelle [mm] \bruch{1}{2n} [/mm] widersprechen.
  

> soll auf punktweise Grenzwert untersucht werden.
> Konvergiert die Funktionenfolge [mm](f_n)n\in\IN[/mm] gleichmässig?
> Wie kann ich das gucken, wenn die Funktion aus zwei
> Funktionen besteht? Was ist die Lösung und wie komme ich
> zu dieser?
>  
> Danke

Es handelt sich tatsächlich um etwas sonderbare
Funktionen. Hast du dir eine Zeichnung gemacht ?
Zudem schrumpft ja der Definitionsbereich für [mm] n\to\infty [/mm]
bis am Ende nur noch die Stelle x=0 übrigbleibt.
Als mögliche "Grenzfunktion" f kommt also nur die
Funktion  

            [mm] f:\{0\}\to\{0\} [/mm]

mit         [mm] f:0\mapsto [/mm] 0

in Frage. Für alle positiven x existiert der Grenzwert
[mm] \limes_{n\to\infty}f(x) [/mm] gar nicht, weil für genügend große Werte von n
x gar nicht mehr im Definitionsbereich von [mm] f_n [/mm] liegt.


LG




Bezug
                
Bezug
funktionsfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mo 07.09.2009
Autor: Danielt23

Aufgabe
Hallo und danke für die schnelle Antwort. Du hast geschrieben:

Es handelt sich tatsächlich um etwas sonderbare
Funktionen. Hast du dir eine Zeichnung gemacht ?
Zudem schrumpft ja der Definitionsbereich für $ [mm] n\to\infty [/mm] $
bis am Ende nur noch die Stelle x=0 übrigbleibt.
Als mögliche "Grenzfunktion" f kommt also nur die
Funktion  

            $ [mm] f:\{0\}\to\{0\} [/mm] $

mit         $ [mm] f:0\mapsto [/mm] $ 0

in Frage. Für alle positiven x existiert der Grenzwert
$ [mm] \limes_{n\to\infty}f(x) [/mm] $ gar nicht, weil für genügend große Werte von n
x gar nicht mehr im Definitionsbereich von $ [mm] f_n [/mm] $ liegt.  

Nun meine Frage zu diener Antwort: Die Zeichnung ist in der Aufgabenstellung shcon vorhanden.

Es ist eine Funktion die aus dem Ursprung kommt. Gerade in eine Spitze verläuft und wieder zuirück zu y=0 geradeförmig verläuft und anschliessend bis x=1 auf y=0 bleibt. Nur ich verstehe  immer noch nicht wie das rechnerisch gegen 0 verlaufen kann, denn wenn ich in eine dieser beiden Funktionen egal in welche n gegen unendlich laufen lasse, geht die FUnktion gegen unendlich und nicnht gegen null. WIe kommt man denn nun auf null?

Bezug
                        
Bezug
funktionsfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Mo 07.09.2009
Autor: Al-Chwarizmi


> Hallo und danke für die schnelle Antwort. Du hast
> geschrieben:
>  
> Es handelt sich tatsächlich um etwas sonderbare
>  Funktionen. Hast du dir eine Zeichnung gemacht ?
>  Zudem schrumpft ja der Definitionsbereich für [mm]n\to\infty[/mm]
>  bis am Ende nur noch die Stelle x=0 übrigbleibt.
>  Als mögliche "Grenzfunktion" f kommt also nur die
>  Funktion  
>
>             [mm]f:\{0\}\to\{0\}[/mm]
>  
> mit         [mm]f:0\mapsto[/mm] 0
>  
> in Frage. Für alle positiven x existiert der Grenzwert
>  [mm]\limes_{n\to\infty}f(x)[/mm] gar nicht, weil für genügend
> große Werte von n
>  x gar nicht mehr im Definitionsbereich von [mm]f_n[/mm] liegt.


> Die Zeichnung ist in der
> Aufgabenstellung schon vorhanden.

Könntest du die hier posten ?
  

> Es ist eine Funktion die aus dem Ursprung kommt. Gerade in
> eine Spitze verläuft und wieder zuirück zu y=0   [verwirrt]
> geradeförmig verläuft und anschliessend bis x=1 auf y=0
> bleibt.

Wenn das so sein sollte, hast du die Definition der
Funktionen [mm] f_n [/mm] nicht korrekt angegeben !

> Nur ich verstehe  immer noch nicht wie das
> rechnerisch gegen 0 verlaufen kann, denn wenn ich in eine
> dieser beiden Funktionen egal in welche n gegen unendlich
> laufen lasse, geht die Funktion gegen unendlich und nicht
> gegen null. WIe kommt man denn nun auf null?

So wie ich die Aufgabe verstanden habe, ist die Funktion
[mm] f_n [/mm]  nur auf dem Intervall von 0 bis [mm] \frac{1}{n} [/mm] definiert,
nicht auf dem von 0 bis 1.

Der Graph von [mm] f_n [/mm] besteht aus zwei Strecken: die erste
vom Nullpunkt O(0/0) zum Punkt [mm] $P\left(\frac{1}{2\,n}\,\,\big{/}\,n^2\right)$ [/mm] und die zweite
von [mm] Q\left(\frac{1}{2\,n}\,\,\big{/}\,-n^2\right) [/mm] zu [mm] R\left(\frac{1}{n}\,\,\big{/}\,-2\,n^2\right) [/mm]


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de