www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - g irreduzibel...
g irreduzibel... < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

g irreduzibel...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mo 04.02.2008
Autor: Caroline

Hallo,

komme mal wieder nicht weiter :-(

K Körper f [mm] \in [/mm] K[X] irreduzibles Polynom ungeraden Grades und [mm] \alpha [/mm] Nullstelle von f in seinem Zerfällungskörper. Sei g [mm] \in [/mm] K[X] irreduzibel vom Grad 2. Zeigen Sie, dass g auch über [mm] K(\alpha) [/mm] irreduzibel ist.

Ich habe mir gedacht, dass man in [mm] K(\alpha) [/mm] nun ja f = [mm] (X-\alpha) [/mm] * h mit deg h gerade und > 1

Wenn ich nun annehme, dass g reduzibel wäre, dann muss g = [mm] (X-\alpha)*u [/mm] mit deg u = 1 sein, also ist [mm] \alpha [/mm] auch auf jeden Fall Nullstelle von g, wieso kann dies nicht sein, ich finde keinen Widerspruch? Kann ein g das vorher in K[X] irreduzibel war nicht auch hier die Nullstelle [mm] \alpha [/mm] besitzen? Ich weiß nicht wie ich nun fortfahren kann...

Ich hoffe ihr habt einen Tipp für mich :-(

Viele liebe Grüße

Caro

        
Bezug
g irreduzibel...: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mo 04.02.2008
Autor: felixf

Hallo Caro

> K Körper f [mm]\in[/mm] K[X] irreduzibles Polynom ungeraden Grades
> und [mm]\alpha[/mm] Nullstelle von f in seinem Zerfällungskörper.
> Sei g [mm]\in[/mm] K[X] irreduzibel vom Grad 2. Zeigen Sie, dass g
> auch über [mm]K(\alpha)[/mm] irreduzibel ist.
>  
> Ich habe mir gedacht, dass man in [mm]K(\alpha)[/mm] nun ja f =
> [mm](X-\alpha)[/mm] * h mit deg h gerade und > 1
>  
> Wenn ich nun annehme, dass g reduzibel wäre, dann muss g =
> [mm](X-\alpha)*u[/mm] mit deg u = 1 sein, also ist [mm]\alpha[/mm] auch auf
> jeden Fall Nullstelle von g, wieso kann dies nicht sein,

Wieso sollte [mm] $\alpha$ [/mm] Nullstelle von $g$ sein?!? Das kann niemals der Fall sein, da dann $f = g$ (bis auf konstante Faktoren) gelten muesste!

Versuch's doch mal mit dem Gradsatz: sei [mm] $\beta$ [/mm] eine Nullstelle von $g$, und betrachte den Koerperturm [mm] $K(\alpha, \beta) [/mm] / [mm] K(\alpha) [/mm] / K$ und den Koerperturm [mm] $K(\alpha, \beta) [/mm] / [mm] K(\beta) [/mm] / K$. Ueber die Grade von [mm] $K(\alpha) [/mm] / K$ und [mm] $K(\beta) [/mm] / K$ kannst du explizit was sagen. Und ueber die anderen dann per Gradsatz auch etwas, und insgesamt bekommst du damit eine Aussage ueber die irreduziblitaet von $g$ ueber [mm] $K(\alpha)$ [/mm] und von $f$ ueber [mm] $K(\beta)$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de