www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - gebr.-rat. Kurvenscharen
gebr.-rat. Kurvenscharen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebr.-rat. Kurvenscharen: Symmetrie bei Kurvenschar
Status: (Frage) beantwortet Status 
Datum: 14:03 So 04.12.2005
Autor: ghl

Hallo,

ich habe folgendes Problem: Es war eine gebrochen-rationale Kurvenschar der Gleichung

[mm] ft(x)=(4x-t)/x^2 [/mm] gegeben. (t > 0)

Diese war ausführlich zu diskutieren - soweit kein Problem. Als ich aber eine Symmetriebetrachtung vornahm, kam ich auf "Punktsymmetrie zum Koordinatenursprung". Nachdem ich aber für einige t den Graphen gezeichnet habe, stellte ich fest, dass diese nicht punktsymmetrisch waren. Wo liegt mein Fehler?

        
Bezug
gebr.-rat. Kurvenscharen: keine Symmetrie
Status: (Antwort) fertig Status 
Datum: 14:13 So 04.12.2005
Autor: CobDac

Hallo,

vielleicht kannst du uns mal deine Rechenschritte zur Ermittlung der Symetrie offen legen um zu sehen wo der Fehler liegt, denn für t>0 , was auch Vorraussetzung, liegt keine Symetrie vor.

Welche Funktionen hast du denn gezeichnet für welches t, bei denen du auf Punktsymetrie zum Urpsrung kommst ?

Mfg

CobDac

Bezug
                
Bezug
gebr.-rat. Kurvenscharen: meine Rechnung
Status: (Frage) beantwortet Status 
Datum: 17:43 So 04.12.2005
Autor: ghl

Also ich habe
f(-x) gebildet

f(-x)= [mm] \bruch{4(-x)-t}{(-x)^2} [/mm]
f(-x)= [mm] \bruch{-4x-t}{x^2} [/mm]
f(-x)=-f(x)

--> Punktsymmetrie zum Ursprung

Bezug
                        
Bezug
gebr.-rat. Kurvenscharen: Korrektur
Status: (Antwort) fertig Status 
Datum: 18:00 So 04.12.2005
Autor: Loddar

Hallo ghl,

[willkommenmr] !!


> f(-x)= [mm]\bruch{4(-x)-t}{(-x)^2}[/mm]
> f(-x)= [mm]\bruch{-4x-t}{x^2}[/mm]

[ok]


> f(-x)=-f(x)

[notok] Hier übersiehst Du das Minuszeichen vor dem $t_$ .

Es gilt ja: $-f(x) \ = \ [mm] -\bruch{4x-t}{x^2} [/mm] \ = \ [mm] \bruch{-4x \ \red{+} \ t}{x^2} [/mm] \ [mm] \not= [/mm] \ [mm] \bruch{-4x-t}{x^2} [/mm] \ = \ f(-x)$

Es liegt also keine Punktsymmetrie zum Ursprung vor.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de