www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - gekoppelte DGL
gekoppelte DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gekoppelte DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Mo 12.05.2008
Autor: phili_guy

Aufgabe
Für [mm] x(t),y(t) [/mm] sei folgender Zusammenhang gegeben:
[mm]\dot x(t)=a*y(t)[/mm]
[mm]\dot y(t)=b-a*x(t)[/mm]
Weiterhin gilt [mm]x(0)=c,y(0)=0[/mm].Lösen sie das DGLS für [mm] x(t)\text{ und } y(t) [/mm]

Ok ,diese Aufgabe habe ich mir jetzt selbst ausgedacht, aber ich habe was sehr ähnliches Problem in einer Physikaufgabe .. wenn ich die grundzüge weiß,wie ich sowas lösen kann, dann komme ich schon selbst klar.Kann mir jemand mal vom prinzip her erklären ,wie ich sowas löse?

vielen danke schonmal im vorraus

adrian

        
Bezug
gekoppelte DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Mo 12.05.2008
Autor: MathePower

Hallo phili_guy,

> Für [mm]x(t),y(t)[/mm] sei folgender Zusammenhang gegeben:
>  [mm]\dot x(t)=a*y(t)[/mm]
>  [mm]\dot y(t)=b-a*x(t)[/mm]
>  Weiterhin gilt
> [mm]x(0)=c,y(0)=0[/mm].Lösen sie das DGLS für [mm]x(t)\text{ und } y(t)[/mm]
>  
> Ok ,diese Aufgabe habe ich mir jetzt selbst ausgedacht,
> aber ich habe was sehr ähnliches Problem in einer
> Physikaufgabe .. wenn ich die grundzüge weiß,wie ich sowas
> lösen kann, dann komme ich schon selbst klar.Kann mir
> jemand mal vom prinzip her erklären ,wie ich sowas löse?

Die einfachste Methode ist wohl das in eine DGL 2. Ordnung in [mm]x\left(t\right)[/mm] umzuschreiben:

[mm]\dot{x}\left(t\right)=a*y\left(t\right) \Rightarrow x''\left(t\right)=a*\dot{y}\left(t\right)[/mm]

[mm]\Rightarrow x''\left(t\right)=a*\left(b-a*x\left(t\right)\right)[/mm]

Mit dem Ansatz [mm]x\left(t\right)=e^{r*t}[/mm] findest Du dann die Lösungen.

Willst Du das DGL-System lösen, dann muß Du das erstmal umschreiben:

[mm]\pmat{\dot{x}\left(t\right) \\ \dot{y}\left(t\right)}=\pmat{0 & a \\ -a & 0}\pmat{x\left(t\right) \\ y\left(t\right)}+ \pmat{0 \\ b}[/mm]

Ist [mm]C:=\pmat{0 & a \\ -a & 0}, \ d:=\pmat{0 \\ b}[/mm]

Dann lautet das System:

[mm]\pmat{\dot{x}\left(t\right) \\ \dot{y}\left(t\right)}=C \pmat{x\left(t\right) \\ y\left(t\right)}+ d[/mm]

Zunächst sind die  Eigenwerte der Matrix C zu berechnen. Durch eine Transformationsmatrix T erhältst Du ein neues (homogenes) DGL-System

[mm]\pmat{x\left(t\right) \\ y\left(t\right)}=T*\pmat{\tilde{x}\left(t\right) \\ \tilde{y}\left(t\right)}[/mm]

Von dem neuen DGL-System kannst Du jetzt die Lösungen einfacher bestimmen, da die transformierte Matrix bei 2 verschiedenen Eigenwerten eine Diagonalmatrix ist.

[mm]\pmat{\dot{\tilde{x}}\left(t\right) \\ \dot{\tilde{y}}\left(t\right)}=\pmat{\lambda_{1} & 0 \\ 0 & \lambda_{2}}*\pmat{\tilde{x}\left(t\right) \\ \tilde{y}\left(t\right)}[/mm]

,wobei [mm]\lambda_{1}, \lambda_{2}[/mm] die Eigenwerte der Matrix C sind.

Um die Lösung des inhomogenen DGL-Systems zu bestimmen, wendest Du hier die Methode der   []Variation der Konstanten an.

>  
> vielen danke schonmal im vorraus
>  
> adrian

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de