gemeinsame Vert. berechnen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Guten Tag
Wenn ich eine uniform(0,1) verteilte Zufallsvariable $U$ habe, sowie eine Zufallsvariable $X$ mit Verteilung [mm] $\mu$. [/mm] Ich weiss, dass $U$ und $X$ sind unabhängig. Des weiteren sei eine Borelmessbar und integrierbare Funktion $f$ gegeben, die positiv ist. Nun betrachte ich die Zufallsvariable $Y=(X,f(X)U)$. Wie kann ich nun die Verteilung von $Y$ berechnen?
Die Verteilung [mm] $\mu$ [/mm] ist gegeben durch [mm] $\mu (A)=\frac{\int_A f(x)dx}{\int_\mathbb{R}f(x)dx}$.
[/mm]
Ich danke euch für die Hilfe.
Liebe Grüsse
Marianne
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:09 Sa 06.10.2012 | Autor: | Infinit |
Hallo Marianne,
ich glaube nicht, dass Dir unter der Rubrik "Schulmathe" hier jemand weiterhelfen kann, deswegen habe ich die Frage mal in die Hochschulmathe verschoben.
Viele Grüße,
Infinit
|
|
|
|
|
Hiho,
der Einfachheit halber setze ich [mm] $\bruch{1}{\integral_\IR\,f(x)\,dx} [/mm] = c$, da das nur eine Normierungskonstante ist.
Dann ergibt sich deine gemeinsame Dichte zu [mm] $f_{(X,U)} [/mm] (x,u) = [mm] cuf(x)*1_{[0,1]}(u)$ [/mm] (warum?)
Ist das f in der Verteilung von [mm] \mu [/mm] das selbe wie in deinem Zufallsvektor? (auch wenn das letztlich keine Rolle spielt fürs Vorgehen).
Dann ergibt sich deine Verteilung $F(a,b)$ eben einfach als Integration der gemeinsamen Dichte über das Integrationsgebiet $(X,f(X)U) [mm] \le [/mm] (a,b)$ (wobei das [mm] \le [/mm] hier komponentenweise zu verstehen ist).
Ein "Patentrezept" gibt es dafür nicht wirklich, man muss halt jedesmal schauen, wie man das Integrationsgebiet schön umformen kann.
Formal würde dann also gelten:
$F(a,b) = [mm] \integral_{(X,f(X)U) \le (a,b)} \, f_{(X,U)} (x,u)\,dx\,du$
[/mm]
MFG,
Gono.
|
|
|
|