www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - gemischte Potenzgesetze
gemischte Potenzgesetze < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemischte Potenzgesetze: Um eine Potenzbruch?
Status: (Frage) beantwortet Status 
Datum: 18:46 Mi 28.02.2007
Autor: netgear

Aufgabe
Vererinfache soweit wie möglich!

a²*b(Potenz)-1*c³_(Bruch) _c-²a³b²

Hi,

ich habe bereits die Lösung(habe im Lösungsbuch geschaut) und dieser sagt das [mm] x_{4}*z_{4} [/mm] raus kommt. Ich habe aber [mm] z_{-4} [/mm] herraus bekommen. Ich glaube die haben, als die den Bruch im Kehrwert genommen haben die Zahl nicht umgedreht. Ich zerbreche mir bald den Kopf über diese Aufgabe. Übrigens es ist das Stark Mathematik Abschlussprüfungen Buch(Nr.61500).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Viele Grüße
netgear

        
Bezug
gemischte Potenzgesetze: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mi 28.02.2007
Autor: M.Rex

Hallo

Meinst du:

[mm] \bruch{a²b^{-1}c³}{c^{-2}a³b²} [/mm] ?

Und wie kommst du auf die Lösung mit z?

Es gilt:

[mm] \bruch{a²b^{-1}c³}{c^{-2}a³b²} [/mm]
[mm] =a^{2-3}b^{-1-2}c^{3-(-2)} [/mm]
[mm] =a^{-1}b^{-3}c^{5} [/mm]
[mm] =\bruch{c^{5}}{ab³} [/mm]

Marius

Bezug
                
Bezug
gemischte Potenzgesetze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Mi 28.02.2007
Autor: netgear

OH tut mir wirklich Leid. Nun die richtige Aufgabe, ich Depp:

[mm] (\bruch{x²y-³}{xz-²})-² [/mm] : [mm] (\bruch{y³z-4}{x³})² [/mm]

Entschuldigt vielmals.

Viele Grüße
netgear

P.S.: Zum zweiten Bruch das soll nicht heißen -4 (Differenz) sondern hoch minus vier (Potenz).

Bezug
                        
Bezug
gemischte Potenzgesetze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Do 01.03.2007
Autor: M.Rex


> OH tut mir wirklich Leid. Nun die richtige Aufgabe, ich
> Depp:
>  
> [mm](\bruch{x²y-³}{xz-²})-²[/mm] : [mm](\bruch{y³z-4}{x³})²[/mm]
>  
> Entschuldigt vielmals.
>
> Viele Grüße
> netgear
>  
> P.S.: Zum zweiten Bruch das soll nicht heißen -4
> (Differenz) sondern hoch minus vier (Potenz).


Dann schreib das doch.  z^{-4}  ergibt [mm] z^{-4} [/mm]

Aber zur Aufgabe:


[mm] (\bruch{x²y{-3}}{xz^{-2}})^{-2}:(\bruch{y³z^{-4}}{x³})² [/mm]
[mm] =(\bruch{xz^{-2}}{x²y^{-3}})²:(\bruch{(y³z^{-4})²}{(x³)²}) [/mm]
[mm] =\bruch{(xz^{-2})²}{(x²y^{-3})²}\red{*}\bruch{(x³)²}{(y³z^{-4})²} [/mm]
[mm] =\bruch{x²z^{-4}*x^{6}}{(x^{4}y^{-6}*y^{6}z^{-8}} [/mm]
[mm] =\bruch{x^{8}*y^{6}*z^{8}}{x^{4}y^{6}z^{4}} [/mm]
[mm] =x^{4}z^{4} [/mm]

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de