www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - geordnete Menge ohne Supremum
geordnete Menge ohne Supremum < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geordnete Menge ohne Supremum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:31 Di 02.11.2010
Autor: wulfstone

Aufgabe
Geben Sie eine geordnete Menge (M) und eine Teilmenge S von M an, so dass Ma(S)= gilt und S kein Supremum besitzt.


Hi erstmal!
Ich hänge irgendwie fest.

Als Beispiel wurde in der Vorlesung [mm] (\IN, \le) [/mm] gegeben.
Sei G Menge der gerade nat. Zahlen.
Dann gilt in [mm] (\IN, \le): [/mm]
     Ma(G) = [mm] \emptyset [/mm]
Also hat G kein Supremum in [mm] (\IN, \le). [/mm]

Also mit Ma(...) ist die Menge der Majoranten(obere Schranken) gemeint.

Meinen Folgerungen nach müssen in M Elemente liegen, die in der Majorantenmenge sind, aber S die Teilmenge darf kein Supremum haben,
also keine obere Schranke.

Ich folgere weiter, dass das Supremum das kleinste Element der Majoranten sein soll.

Aber egal wie rum jongliere. Ich finde einfach nix.
Ein Tipp oder noch besser eine Quasilösung wäre sehr hilfreich.

Danke

        
Bezug
geordnete Menge ohne Supremum: weiterer idee dazu
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 Do 04.11.2010
Autor: wulfstone

Nur falls sich jemand interessiert.

Ich habe [mm] (\IQ,\le) [/mm] als Ordnung gewaehlt und als Teilmenge S (1,2,3,4) im offenen Intervall. So besitzt meiner Meinung nach S keine obere Schranke, da man 3,999... beliebig weit fassen kann, aber Ma(S) ist nicht leer, denn alle rationalen Zahlen x [mm] \in \IQ [/mm]  mit  4 [mm] \le [/mm] x sind Majoranten davon.

Bezug
                
Bezug
geordnete Menge ohne Supremum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Do 04.11.2010
Autor: angela.h.b.


> Nur falls sich jemand interessiert.
>  
> Ich habe [mm](\IQ,\le)[/mm] als Ordnung gewaehlt und als Teilmenge S
> (1,2,3,4) im offenen Intervall.

Hallo,

ich verstehe die Menge nicht.
[mm] S=\{1,2,3,4\} [/mm] oder [mm] S=(1,2)\cup(2,3)\cup(3,4) [/mm] oder was?


> So besitzt meiner Meinung
> nach S keine obere Schranke, da man 3,999... beliebig weit
> fassen kann,

Meine beiden Mengen da oben haben eine obere Schranke. Z.B. die 4711.

Sie haben auch beide ein Supremum, nämlich die 4.
[mm] (1,2)\cup(2,3)\cup(3,4) [/mm] hat allerdings kein Maximum.

> aber Ma(S) ist nicht leer, denn alle

> rationalen Zahlen x [mm]\in \IQ[/mm]  mit  4 [mm]\le[/mm] x sind Majoranten
> davon.

Ja.
Aber sollte M(S) nicht eigentlich leer sein lt. Aufgabenstellung?

Gruß v. Angela


Bezug
        
Bezug
geordnete Menge ohne Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Do 04.11.2010
Autor: angela.h.b.


> Geben Sie eine geordnete Menge (M) und eine Teilmenge S von
> M an, so dass Ma(S)= gilt und S kein Supremum besitzt.

Hallo,

soll das heißen [mm] "Ma(S)=\emptyset"? [/mm]

> Als Beispiel wurde in der Vorlesung [mm](\IN, \le)[/mm] gegeben.
>  Sei G Menge der gerade nat. Zahlen.
>  Dann gilt in [mm](\IN, \le):[/mm]
>       Ma(G) = [mm]\emptyset[/mm]
>  Also hat G kein Supremum in [mm](\IN, \le).[/mm]
>  
> Also mit Ma(...) ist die Menge der Majoranten(obere
> Schranken) gemeint.

Aha.

>  
> Meinen Folgerungen nach müssen in M Elemente liegen, die
> in der Majorantenmenge sind,

???


> aber S die Teilmenge darf kein
> Supremum haben,
>  also keine obere Schranke.
>  
> Ich folgere weiter, dass das Supremum das kleinste Element
> der Majoranten sein soll.

So ist "Supremum" ja definiert.

>  
> Aber egal wie rum jongliere. Ich finde einfach nix.

Aber Du hast doch schon ein Beispiel.
Mit [mm] M=\IN [/mm] und S:=ungerade Zahlen funktioniert's doch genauso.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de