www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - geschlossener kreis
geschlossener kreis < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geschlossener kreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Sa 26.06.2010
Autor: domerich

Aufgabe
die strecke g(s) = [mm] \bruch{s-2}{(s+4)(s+6)} [/mm] soll mit einem P regler geregelt werden

stellen sie anhand der ÜF des offenen Kreises die des geschlossenen kreises dar: [mm] G(s)=K\bruch{s-2}{(s+4)(s+6)} [/mm]

also erstmal, wo ist denn der unterschied zwischen offenen und geschlossener regelkreis, meiner meinung nach ist, sobald ich eine rückkopplung hab der regelkreis geschlossen?

leider hab ich keinen schimmer wie ich ansetzten soll!

        
Bezug
geschlossener kreis: ÜF der Regelkreise
Status: (Antwort) fertig Status 
Datum: 09:26 So 27.06.2010
Autor: Infinit

Hallo domerich,
das solltet ihr aber gehabt haben, denn dies ist eine grundsätzliche Eigenschaft einer Regelkreisstruktur.
Beim offenen Regelkreis schneidet man die Rückkopplung vor dem Differenzenknoten auf und man stellt dann fest, dass die Übertragungsfunktion dieses aufgeschnittenen Regelkreises nichts weiter ist als das Produkt der Übertragungsfunktionen von Regler und Strecke. Diese Funktion hast Du ja sogar schon vorgegeben durch [mm] G(s) [/mm]. Mit dem Regler als [mm] G_R (s) [/mm] und der Strecke als [mm] G_S (s) [/mm] bekommst Du für die Übertragungsfunktion des geschlossenen Regelkreises
$$ [mm] G_{Regel}(s) [/mm] = [mm] \bruch{G_S (s)}{1+G_S(s) G_R (s)} [/mm] $$
Hier taucht im Nenner die ÜF des offenen Regelkreises auf und so kommt man auf ein
$$ [mm] G_{Regel} [/mm] (s) = [mm] \bruch{\bruch{G(s)}{K}}{1+G(s)} \, [/mm] . $$
Viele Grüße,
Infinit

Bezug
                
Bezug
geschlossener kreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 Mo 12.07.2010
Autor: domerich


> Hallo domerich,
>  das solltet ihr aber gehabt haben, denn dies ist eine
> grundsätzliche Eigenschaft einer Regelkreisstruktur.
> Beim offenen Regelkreis schneidet man die Rückkopplung vor
> dem Differenzenknoten auf und man stellt dann fest, dass
> die Übertragungsfunktion dieses aufgeschnittenen
> Regelkreises nichts weiter ist als das Produkt der
> Übertragungsfunktionen von Regler und Strecke. Diese
> Funktion hast Du ja sogar schon vorgegeben durch [mm]G(s) [/mm]. Mit
> dem Regler als [mm]G_R (s)[/mm] und der Strecke als [mm]G_S (s)[/mm] bekommst
> Du für die Übertragungsfunktion des geschlossenen
> Regelkreises
>  [mm]G_{Regel}(s) = \bruch{G_S (s)}{1+G_S(s) G_R (s)}[/mm]

das verstehe ich, wenn oben ein ein [mm] G_S [/mm] Glied ist und als negative Rückkopplung ein [mm] G_R [/mm] ist.


>  Hier
> taucht im Nenner die ÜF des offenen Regelkreises auf und
> so kommt man auf ein
> [mm]G_{Regel} (s) = \bruch{\bruch{G(s)}{K}}{1+G(s)} \, .[/mm]
>  

hier werde ich leider einfach nicht schlau, woraus resultiert das denn?

> Viele Grüße,
> Infinit  

Bezug
                        
Bezug
geschlossener kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Mo 12.07.2010
Autor: metalschulze

Hallo domerich,

>  >  [mm]G_{Regel}(s) = \bruch{G_S (s)}{1+G_S(s) G_R (s)}[/mm]
>  
> das verstehe ich, wenn oben ein ein [mm]G_S[/mm] Glied ist und als
> negative Rückkopplung ein [mm]G_R[/mm] ist.
>  
>
> >  Hier

> > taucht im Nenner die ÜF des offenen Regelkreises auf und
> > so kommt man auf ein
> > [mm]G_{Regel} (s) = \bruch{\bruch{G(s)}{K}}{1+G(s)} \, .[/mm]
>  >  
>  
> hier werde ich leider einfach nicht schlau, woraus
> resultiert das denn?

[mm] G_{Regel}(s) [/mm] = [mm] \bruch{G_S (s)}{1+G_S(s) G_R (s)} [/mm]
wenn man einführt: G(s) = [mm] G_R(s)*G_S(s) [/mm] = [mm] K*G_S(s) [/mm] so wie es gegeben ist...
kannst du unter dem Bruchstrich ersetzen:  [mm] \rightarrow [/mm] 1+G(s)
oben steht: [mm] G_S(s) [/mm] = [mm] \frac{G(s)}{K} [/mm] und damit hast du dann
[mm] G_{Regel} [/mm] (s) = [mm] \bruch{\bruch{G(s)}{K}}{1+G(s)} [/mm]
soweit die Rechnung von Infinit.

Ich frage mich aber wieso er die Gesamtübertragungsfunktion nicht zu [mm] \frac{G(s)}{1 + G(s)} [/mm] angesetzt hat....oder habe ich grad ein falsches Blockschaltild im Hinterkopf?

>  

Viele Grüße,
Christian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de