www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - gewichtete integration
gewichtete integration < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gewichtete integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Do 25.03.2010
Autor: mathestudent25

hallo,

ich hab allgemein ne frage zu folgender numerischer integration
int(f(x)*ln(x),x,0,1)
was muss ich da berücksichtigen?
ich glaube dass ich das ln(x) nicht zum f(x) dazugeben darf, aber wieso?

danke
lg

        
Bezug
gewichtete integration: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Fr 26.03.2010
Autor: Event_Horizon

Hallo!

Du geizt leider mit ein paar Angaben.

Ich sehe bisher nur, daß du numerisch [mm] \int_0^1f(x)*\ln(x)\,dx [/mm]  berechnen willst. Aber nach welchem Algorithmus verschweigst du uns.

Klar sollte sein, daß man nicht auf sowas wie [mm] f(0)*\ln(0) [/mm] stoßen sollte. Um das mit Ober- und Untersummen zu erklären, bei denen man das Integral in Rechtecke zerlegt: Die Höhe der Rechtecke sollte nicht aus dem Funktionswert am linken Rand der Rechtecke berechnet werden, denn der linke Rand des ersten Rechtecks liegt bei x=0.
Es kann also schon helfen, das mit dem rechten Rand zu machen.

Bei anderen Algorithmen muß man ähnlich verfahren.

Bezug
                
Bezug
gewichtete integration: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:11 Fr 26.03.2010
Autor: mathestudent25

ja stimmt,sorry ... also wir haben uns mit der gauß quadratur befasst, und ich habe heute verstanden dass wenn man das f(x)*ln(x) als eine funktion betrachtet ich deshalb probleme bekomme weil ich dann bei der fehlerabschätzung die ableitung verwenden muss ... und da bekomme ich wegen dem ln(x) probleme da wenn man es integriert ein ausdruck kommt bei dem das x im nenner ist und ich somit eine singularität habe, deshalb schiebt man das ln(x) in das gewicht [mm] w_k [/mm] sodass nun
[mm]\int_0^1f(x)*\ln(x)\,dx[/mm][mm] =\sum_{k=0}^n(f_m(x_k)*w_k)+0 [/mm]
wobei null durch orthogonale polynome entsteht.

richtig verstanden?

> Hallo!
>  
> Du geizt leider mit ein paar Angaben.
>  
> Ich sehe bisher nur, daß du numerisch
> [mm]\int_0^1f(x)*\ln(x)\,dx[/mm]  berechnen willst. Aber nach
> welchem Algorithmus verschweigst du uns.
>  
> Klar sollte sein, daß man nicht auf sowas wie [mm]f(0)*\ln(0)[/mm]
> stoßen sollte. Um das mit Ober- und Untersummen zu
> erklären, bei denen man das Integral in Rechtecke zerlegt:
> Die Höhe der Rechtecke sollte nicht aus dem Funktionswert
> am linken Rand der Rechtecke berechnet werden, denn der
> linke Rand des ersten Rechtecks liegt bei x=0.
>  Es kann also schon helfen, das mit dem rechten Rand zu
> machen.
>  
> Bei anderen Algorithmen muß man ähnlich verfahren.


Bezug
                        
Bezug
gewichtete integration: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 So 28.03.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de