www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - ggT Polynome
ggT Polynome < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT Polynome: reduzibel, irreduzibel
Status: (Frage) beantwortet Status 
Datum: 21:22 So 08.06.2014
Autor: YuSul

Aufgabe
I) Bestimmen Sie einen ggT von [mm] $T^3+2T^2+2T+1$ [/mm] und [mm] $T^2+T+1$ [/mm]

II) Bestimmen Sie einen ggT von [mm] T^5+T^2-T [/mm] und [mm] T^4+T-1 [/mm]

I) Die Zerlegung des ersten Polynoms ist ziemlich offensichtlich:

[mm] $(T+1)(T^2+T+1)$ [/mm] das zweite Polynom ist irreduzibel (hatten wir in der Vorlesung) [mm] $T^2+T+1$ [/mm] also ist der ggT einfach [mm] $T^2+T+1$ [/mm]

II) Naja, hier ist die Zerlegung noch offensichtlicher:

[mm] $T(T^4+T-1)$, [/mm] womit sofort klar ist, dass [mm] $T^4+T-1$ [/mm] der ggT ist.

Meine eigentlich frage ist, dass ich bei solchen Aufgaben auf nichts besonderes achten muss, oder. Es ist im Grunde ganz normale linear Faktorzerlegung also Nullstellenberechnung und kann ich so auch aufschreiben zum Beispiel wenn ich eine Polynomdivision mache, oder um auf die Zerlegung komme die Nullstellen berechne etc.

        
Bezug
ggT Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 09.06.2014
Autor: abakus


> I) Bestimmen Sie einen ggT von [mm]T^3+2T^2+2T+1[/mm] und [mm]T^2+T+1[/mm]

>

> II) Bestimmen Sie einen ggT von [mm]T^5+T^2-T[/mm] und [mm]T^4+T-1[/mm]
> I) Die Zerlegung des ersten Polynoms ist ziemlich
> offensichtlich:

>

> [mm](T+1)(T^2+T+1)[/mm] das zweite Polynom ist irreduzibel (hatten
> wir in der Vorlesung) [mm]T^2+T+1[/mm] also ist der ggT einfach
> [mm]T^2+T+1[/mm]

>

> II) Naja, hier ist die Zerlegung noch offensichtlicher:

>

> [mm]T(T^4+T-1)[/mm], womit sofort klar ist, dass [mm]T^4+T-1[/mm] der ggT
> ist.

>

> Meine eigentlich frage ist, dass ich bei solchen Aufgaben
> auf nichts besonderes achten muss, oder.

Das kommt darauf an, was du unter "nichts besonderes" verstehst.
Ansonsten gibt es sicher viele Methoden, um die Aufgabe zu lösen (z.B. auch den Euklidischen Algorithmus).
Gruß Abakus

> Es ist im Grunde

> ganz normale linear Faktorzerlegung also
> Nullstellenberechnung und kann ich so auch aufschreiben zum
> Beispiel wenn ich eine Polynomdivision mache, oder um auf
> die Zerlegung komme die Nullstellen berechne etc.

Bezug
                
Bezug
ggT Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Mo 09.06.2014
Autor: YuSul

Dann stelle ich die Frage mal ein wenig konkreter.
Also zu erst würde ich gerne wissen, ob meine Zerlegung so richtig ist. Das sollte aber passen.

Die zweite Frage ist, ob ich solche Aufgaben so lösen kann, dass ich einfach Nullstellen berechne und dazu die normalen Verfahren, also pq-Formel, Polynomdivision etc. verwenden kann und es auch so aufschreiben darf.

Bezug
                        
Bezug
ggT Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Di 10.06.2014
Autor: Diophant

Hallo,

> Dann stelle ich die Frage mal ein wenig konkreter.
> Also zu erst würde ich gerne wissen, ob meine Zerlegung
> so richtig ist. Das sollte aber passen.

Hallo, ja klar, die sind richtig. [ok]

> Die zweite Frage ist, ob ich solche Aufgaben so lösen
> kann, dass ich einfach Nullstellen berechne und dazu die
> normalen Verfahren, also pq-Formel, Polynomdivision etc.
> verwenden kann und es auch so aufschreiben darf.

Weshalb nicht? Das kommt halt a) schnell an eine Grenze, wo man nicht mehr weiterkommt und b) braucht es keine Nullstellen für einen [mm] ggT\ne{1}. [/mm]

Wie würdest du im Fall der Polynome

[mm] X^4+X^3+2*X^2+X+1 [/mm] sowie [mm] X^4-2*X^3+4*X^2-2*X+3 [/mm]

vorgehen?

Bedeutet: deine Methode ist für Spezialfälle geeignet, i.a. aber eher nicht.


Gruß, Diophant

Bezug
                                
Bezug
ggT Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:08 Di 10.06.2014
Autor: YuSul

Die Nullstellen einfach deshalb um die linear Faktorzerlegung zu finden, welche ich dann hinterher vergleichen kann.

Bezug
                                        
Bezug
ggT Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Di 10.06.2014
Autor: Diophant

Hallo,

> Die Nullstellen einfach deshalb um die linear
> Faktorzerlegung zu finden, welche ich dann hinterher
> vergleichen kann.

das ist mir schon auch klar. ;-)

Daher mein Beispiel: beide Polynome besitzen keine reellen Nullstellen, jedoch einen (quadratischen) ggT.

Gruß, Diophant

Bezug
                                                
Bezug
ggT Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Di 10.06.2014
Autor: YuSul

Ich habe ein wenig rumprobiert, aber für dein Beispiel keine Faktorisierung gefunden. Wie würde die denn hier aussehen?

Bezug
                                                        
Bezug
ggT Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Di 10.06.2014
Autor: fred97


> Ich habe ein wenig rumprobiert, aber für dein Beispiel
> keine Faktorisierung gefunden. Wie würde die denn hier
> aussehen?

In beiden Polynomen steckt der Faktor [mm] X^2+1 [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de