www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - ggT und Linearkombination
ggT und Linearkombination < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT und Linearkombination: Korrektur und Tipp
Status: (Frage) beantwortet Status 
Datum: 22:52 Mo 21.11.2011
Autor: Catman

Aufgabe
Bestimmen Sie die folgenden größten gemeinsamen Teiler und stellen Sie sie jeweils als Linearkombination dar:
(b) ggT(n, 2n-1) n [mm] \in [/mm] N
(c) ggT(2n-1, [mm] 2n^2 [/mm] -1) n [mm] \in [/mm] N

Also die Teilaufgabe (b) konnte ich glaube ich richtig lösen, aber bei der (c) komme ich gar nicht weiter.

Hier mein Ansatz:

(b)
2n-1=n*1 + (n-1)
n= (n-1) *1 + 1
n-1=1*(n-1) + 0

Also ist der ggT = 1 und die Linearkombination 1=2n-(2n-1) ???

Bei (c)

[mm] 2n^2-1=2n-1 [/mm] * ? + ? Also ich weiß hier nicht wie ich mit dem Euklidischen Algorithmus weiter kommen kann.

Gruß

Andy

        
Bezug
ggT und Linearkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Mo 21.11.2011
Autor: wieschoo


> Bestimmen Sie die folgenden größten gemeinsamen Teiler
> und stellen Sie sie jeweils als Linearkombination dar:
>  (b) ggT(n, 2n-1) n [mm]\in[/mm] N
> (c) ggT(2n-1, [mm]2n^2[/mm] -1) n [mm]\in[/mm] N
>  Also die Teilaufgabe (b) konnte ich glaube ich richtig
> lösen, aber bei der (c) komme ich gar nicht weiter.
>
> Hier mein Ansatz:
>  
> (b)
> 2n-1=n*1 + (n-1)
>  n= (n-1) *1 + 1
>  n-1=1*(n-1) + 0
>  
> Also ist der ggT = 1 und die Linearkombination 1=2n-(2n-1)

Also ist der ggT = 1 und die EINE Linearkombination 1=2n-(2n-1)

> ???
>  
> Bei (c)
>
> [mm]2n^2-1=2n-1[/mm] * ? + ? Also ich weiß hier nicht wie ich mit
> dem Euklidischen Algorithmus weiter kommen kann.

Vielleicht geht es besser folgendes zu betrachten
[mm](2n^2+0n-1)=(2n-1)*q+r[/mm]
Das ist ganz normale Polynomdivision.
Auch hier sind die Polynome [mm] $2n-1,2n^2-1$ [/mm] teilerfremd.

>
> Gruß
>  
> Andy


Bezug
                
Bezug
ggT und Linearkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:55 Mo 21.11.2011
Autor: Catman

Also das mit der Polynomdivision bringt mich nicht wirklich weiter, aber ich habe jetzt was weiter gerechnet und komme zu einem Ergebnis, was aber nicht richtig ist, wenn man Zahlen einsetzt. Kann mir jemand erklären, was ich falsch gemacht habe?

[mm] ggT(2n-1,2n^2-1) [/mm] n [mm] \in [/mm] N

[mm] 2n^2-1=(2n-1)*n [/mm] + (n-1)
2n-1= (n-1)*2 +1
n-1=1*(n-1) + 0

Also ist der ggT = 1

für n=1 steht da 0 und 0, da weiß ich nicht genau was ich für diesen Fall schreiben müsste.

und dann müsste doch die Linearkombination wie folgt aussehen:

[mm] 1=(2n-1)-(n-1)*2=(2n-1)-((2n^2-1)-(2n-1)*n)*2=2n(2n-1)-2(2n^2-1) [/mm]

Aber wenn ich das jetzt mit konkreten Zahlen überprüfe stimmt es nicht.

Bezug
                        
Bezug
ggT und Linearkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 Di 22.11.2011
Autor: wieschoo


> Also das mit der Polynomdivision bringt mich nicht wirklich
> weiter, aber ich habe jetzt was weiter gerechnet und komme
> zu einem Ergebnis, was aber nicht richtig ist, wenn man
> Zahlen einsetzt. Kann mir jemand erklären, was ich falsch
> gemacht habe?
>  
> [mm]ggT(2n-1,2n^2-1)[/mm] n [mm]\in[/mm] N
>  
> [mm]2n^2-1=(2n-1)*n[/mm] + (n-1) [ok]
>  2n-1= (n-1)*2 +1 [ok]
>  n-1=1*(n-1) + 0 [ok]
>  
> Also ist der ggT = 1 [ok]
>  
> für n=1 steht da 0 und 0, da weiß ich nicht genau was ich
> für diesen Fall schreiben müsste.

Es gilt ggT(0,0)=0.

>
> und dann müsste doch die Linearkombination wie folgt

EINE Linearkombination

> aussehen:
>  
> [mm]1=(2n-1)-(n-1)*2=(2n-1)-((2n^2-1)-(2n-1)*n)*2\red{\neq}2n(2n-1)-2(2n^2-1)[/mm]

Das ist ein Fehler drin. Weiter würde es gehen mit

                 [mm]\ldots = (2n-1)-((2n^2-1)-(2n-1)*n)*2 = 2n-1 -(2n^2-1-2n^2+n)2[/mm]

wenn du das so weiter machst erhälst du am Ende 1.



Bezug
                                
Bezug
ggT und Linearkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Di 22.11.2011
Autor: Catman

Aber dann steht da ja [mm] 2n^2 [/mm] + n und das ist doch keine kombination mehr aus den beiden ausgangszahlen??

Bezug
                                        
Bezug
ggT und Linearkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Di 22.11.2011
Autor: wieschoo

[mm]ggT(\red{2n^2-1},\blue{2n-1})=1[/mm]

da hast du dich verrechnet.
Eine Möglichkeit wäre
       [mm](-2)\red{(2n^2-1)}+(1+2n)\blue{(2n-1)}=1[/mm]




Bezug
                                                
Bezug
ggT und Linearkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 Di 22.11.2011
Autor: Catman

> [mm]ggT(\red{2n^2-1},\blue{2n-1})=1[/mm]
>  
> da hast du dich verrechnet.
>  Eine Möglichkeit wäre
>         [mm](-2)\red{(2n^2-1)}+(1+2n)\blue{(2n-1)}=1[/mm]
>  
>
>  

Danke, aber ich komme selbst nicht auf diese Lösung. Könntest du vielleicht den weg dorthin von da ab wo ich falsch zusammengefasst habe aufschreiben?

Also von [mm] (2n-1)-(2n^2-1-2n^2+n)*2 [/mm] ?

Bezug
                                                        
Bezug
ggT und Linearkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Di 22.11.2011
Autor: reverend

Hallo Catman,

mir geht Deine Rückrechnung zu schnell.
Schreib doch mal alle drei Zwischenschritte nach dem []erweiterten euklidischen Algorithmus auf, damit man Deinen Fehler überhaupt finden kann.

Wie das richtige Ergebnis aussieht, weißt Du ja jetzt schon, aber Du willst ja noch wissen, wie man es selbst herausbekommt.

Also: vormachen.

Grüße
reverend


Bezug
                                                                
Bezug
ggT und Linearkombination: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Di 22.11.2011
Autor: Catman

Vielen Dank für die Antwort. Bin selbst draufgekommen. Ich schreibs trotzdem mal hin, falls es irgendwen interessieren sollte.

Also hatte dann

[mm] 1=(2n-1)-(n-1)*2=(2n-1)-((2n^2-1)-(2n-1)*n)*2= [/mm]
[mm] (2n-1)-[2(2n^2-1)-2*n*(2n-1)]= [/mm] (-2) [mm] (2n^2-1)+(2n+1)(2n-1) [/mm]

Fehler war: Ich hatte 2n(2n-1) und (2n-1) als 3n(2n-1) zusammengefasst. Habs aber jetzt verstanden.

Gruß

Andy

Bezug
                                                                        
Bezug
ggT und Linearkombination: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Di 22.11.2011
Autor: reverend

Hallo Catman,

das sieht doch gut aus.

> Vielen Dank für die Antwort. Bin selbst draufgekommen. Ich
> schreibs trotzdem mal hin, falls es irgendwen interessieren
> sollte.
>  
> Also hatte dann
>  
> [mm]1=(2n-1)-(n-1)*2=(2n-1)-((2n^2-1)-(2n-1)*n)*2=[/mm]
>  [mm](2n-1)-[2(2n^2-1)-2*n*(2n-1)]=[/mm] (-2) [mm](2n^2-1)+(2n+1)(2n-1)[/mm]
>  
> Fehler war: Ich hatte 2n(2n-1) und (2n-1) als 3n(2n-1)
> zusammengefasst.

Kann ja in der Eile des Gefechts mal passieren.

> Habs aber jetzt verstanden.

Das ist die Hauptsache!

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de